Max-Mahalanobis Linear Discriminant Analysis Networks
@article{pang2018max-mahalanobis,
title={Max-Mahalanobis Linear Discriminant Analysis Networks},
author={Pang, Tianyu and Du, Chao and Zhu, Jun},
pages={4013--4022},
year={2018}}
概
本文介绍了从最大化马氏距离的角度提出了一种defense.
主要内容
对于俩个分布来说, 区分样本属于哪一个分布, 最好的分类器就是贝叶斯分类, 特别的, 如果是高斯分布, 且协方差矩阵一致, 则其分类平面为
\]
其中
\]
\]
特别的, 当\(\Sigma\)为对角矩阵的时候, 其分类平面只与\(\mu_1-\mu_2\)有关.
设一个混合高斯分布:
\]
并定义
\]
因为神经网络强大的拟合分布能力, 我们可以假设\(\Sigma=I\)(文中将\Sigma$分解, 然后用变量替换可以得到, 马氏距离在此情况下具有不变性, 我觉得不如直接这么解释比较实在).
设想, 从第i个分布中采样\(x_{(i)} \sim \mathcal{N}(\mu_i, I)\), 将\(x_{(i)}\)移动到与\(j\)类的分类平面的距离设为\(d_{(i,j)}\),
定理: 如果\(\pi_i=\pi_j\), 则\(d_{(i,j)}\)的期望为
\]
其中\(\Phi\)表示正态分布函数.
注意, 这里的\(d_{i,j}\)是\(x\)到分类平面的距离, 也就是说, 如果\(x_{(i)}\)如果本身就位于别的类中, 同样也计算这个距离, 不公平, 当然如果这么考虑, 证明起来就相当麻烦了.
如果定义
\]
则我们自然希望\(\mathrm{RB}\)越大越好(越鲁棒, 但是根据我们上面的分析, 这个定义是存在瑕疵的). 然后通过导数, 进一步发现
\]
有定理:
所以, 作者的结论就是, 最后一层
\]
满足\((4)\), 为此作者设计了一个算法
去构造. 所以, 这最后一层的参数是固定不训练的. 余下的与普通的网络没有区别.
Max-Mahalanobis Linear Discriminant Analysis Networks的更多相关文章
- 线性判别分析(Linear Discriminant Analysis,LDA)
一.LDA的基本思想 线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD) ...
- 线性判别分析(Linear Discriminant Analysis, LDA)算法分析
原文来自:http://blog.csdn.net/xiazhaoqiang/article/details/6585537 LDA算法入门 一. LDA算法概述: 线性判别式分析(Lin ...
- 线性判别分析(Linear Discriminant Analysis, LDA)算法初识
LDA算法入门 一. LDA算法概述: 线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discrimin ...
- 机器学习: Linear Discriminant Analysis 线性判别分析
Linear discriminant analysis (LDA) 线性判别分析也是机器学习中常用的一种降维算法,与 PCA 相比, LDA 是属于supervised 的一种降维算法.PCA考虑的 ...
- Linear Discriminant Analysis Algorithm
线性判别分析算法. 逻辑回归是一种分类算法,传统上仅限于两类分类问题. 如果有两个以上的类,那么线性判别分析算法是首选的线性分类技术.LDA的表示非常直接.它包括数据的统计属性,为每个类计算.对于单个 ...
- 线性判别分析(Linear Discriminant Analysis)转载
1. 问题 之前我们讨论的PCA.ICA也好,对样本数据来言,可以是没有类别标签y的.回想我们做回归时,如果特征太多,那么会产生不相关特征引入.过度拟合等问题.我们可以使用PCA来降维,但PCA没有将 ...
- 线性判别分析(Linear Discriminant Analysis)
1. 问题 之前我们讨论的PCA.ICA也好,对样本数据来言,可以是没有类别标签y的.回想我们做回归时,如果特征太多,那么会产生不相关特征引入.过度拟合等问题.我们可以使用PCA来降维,但PCA没有将 ...
- [ML] Linear Discriminant Analysis
虽然名字里有discriminat这个字,但却是生成模型,有点意思. 判别式 pk 生成式 阅读:生成方法 vs 判别方法 + 生成模型 vs 判别模型 举例: 判别式模型举例:要确定一个羊是山羊还是 ...
- Linear Discriminant Analysis
Suppose that we model each class density as multivariate Gaussian, in practice we do not know the pa ...
随机推荐
- Java 数据类型转化
目录 Java类型转化 基本数据类型自动类型转换 自动类型提升 强制类型转换 - 自动类型提升的逆运算 int与long int类型与String类型 int类型转换成String类型 方法1:+ 拼 ...
- 日常Java 2021/9/29
StringBuffer方法 public StringBuffer append(String s) 将指定的字符串追加到此字符序列. public StringBuffer reverse() 将 ...
- Hadoop RPC通信
Remote Procedure Call(简称RPC):远程过程调用协议 1. 通过网络从远程计算机程序上请求服务 2. 不需要了解底层网络技术的协议(假定某些传输协议的存在,如TCP或UDP) 3 ...
- 【Android】修改快捷键,前一步默认是Ctrl + Z,修改后一步
我已经忘了,我什么时候已经习惯前一步是Ctrl + Z,后一步是Ctrl + Y Android Studio默认前一步快捷键是相同的,但是后一步就不是了 Ctrl + Y变成删除一行代码,就是下图D ...
- Dos窗口下中文乱码问题
最近用Datax工具进行数据同步时,在DOS窗口下出现了中文乱码问题,导致一些错误只能到Log中查看,在网上找了一些方法,记录使用成功的方法. Dos命令:chcp 通过cmd进入Dos命令窗口,执行 ...
- Ribbon详解
转自Ribbon详解 简介 Spring Cloud Ribbon是一个基于HTTP和TCP的客户端负载均衡工具,它基于Netflix Ribbon实现.通过Spring Cloud的封装,可以让 ...
- 【JAVA】【Basic】概念
1. 历史 1.1. Sun, Green Project, 90年代初,为机顶盒提供一个统一的语言层,oak-->Java, James Gosling, Sun World 1995:JAV ...
- AOP中环绕通知的书写和配置
package com.hope.utils;import org.aspectj.lang.ProceedingJoinPoint;import org.aspectj.lang.annotatio ...
- Apache Log4j 2 报高危漏洞,CODING 联手腾讯安全护卫软件安全
导语 12 月 9 日晚间,Apache Log4j 2 发现了远程代码执行漏洞,恶意使用者可以通过该漏洞在目标服务器上执行任意代码,危害极大. 腾讯安全第一时间将该漏洞收录至腾讯安全漏洞特征库中,C ...
- ciscn_2019_s_6
例行检查 没有开启nx保护,考虑用shellcode来做这道题 程序放入ida查看 我们可以输入48个字符覆盖0使printf打印出bp的值 继续看这里,buf的大小实际上只有0x38的大小,但是re ...