【LeetCode】169. Majority Element 解题报告(Java & Python & C+)
作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/
题目地址:https://leetcode.com/problems/majority-element/
Total Accepted: 110538 Total Submissions: 268289 Difficulty: Easy
题目描述
Given an array of size n, find the majority element. The majority element is the element that appears more than ⌊ n/2 ⌋ times.
You may assume that the array is non-empty and the majority element always exist in the array.
题目大意
找出数组中出现次数超过一半的数字。
解题方法
思路
第一想法,用HashMap。嗯。之前也这么做过,但是一想就不对,肯定效率太差。
然后也没想到太好的方法。但是官方给了几个思路:
时间复杂度: O(n2) — 蛮力法: 依次检查每一个元素是否为众数
时间复杂度: O(n), 空间复杂度: O(n) — 哈希表: 维护一个每一个元素出现次数的哈希表, 然后找到出现次数最多的元素
时间复杂度: O(n log n) — 排序: 在排序后找出连续重复出现次数最多的元素
平均时间复杂度: O(n), 最坏复杂度: 无穷大 — 随机算法: 随机选取一个元素计算其是否为众数. 如果不是,就重复上一步骤直到找到为止。 由于选出众数的概率 1 / 2, 因此期望的尝试次数 < 2
时间复杂度: O(n log n) — 分治法: 将数组拆成2半, 然后找出前一半的众数A和后一半的众数B。则全局众数要么是A要么是B。如果 A == B, 则它自然而然就是全局众数。 如果不是, 则A和B都是候选众数, 则至多只需要检查这两个元素的出现次数即可。
时间复杂度, T(n) = T(n/2) + 2n = O(n log n).
时间复杂度: O(n) — Moore投票算法: 我们维护一个当前的候选众数和一个初始为0的计数器。遍历数组时,我们看当前的元素x:
- 如果计数器是0, 我们将候选众数置为 x 并将计数器置为 1 如果计数器非0, 我们根据x与当前的候选众数是否相等对计数器+1或者-1;
- 一趟之后, 当前的候选众数就是所求众数.时间复杂度 = O(n). 时间复杂度: O(n) — 位操作法: 我们需要32次迭代,
- 每一次计算所有n个数的第i位的1的个数。由于众数一定存在,那么或者1的个数 0的个数多 或者反过来(但绝不会相同)。
- 众数的第i位一定是计数较多数字。
hashmap统计次数
加入不考虑空间复杂度,直接使用字典统计次数,然后找出出现次数最大的那个数字,就能通过。
python代码如下:
class Solution(object):
def majorityElement(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
count = collections.Counter(nums)
return count.most_common(1)[0][0]
C++代码如下:
class Solution {
public:
int majorityElement(vector<int>& nums) {
const int N = nums.size();
unordered_map<int, int> count;
for (int n : nums)
++count[n];
for (auto& c : count) {
if (c.second > N / 2) {
return c.first;
}
}
return -1;
}
};
摩尔投票法 Moore Voting
这个投票方法挺好玩。就是多数派问题。
这个思路是这样的:
- 对于vi,如果c此时为未知状态,则c=v[i],t=1,递增i。
- 如果c==v[i],++t,递增i。
- 如果c!=v[i],–t,如果t==0,将c置为未知状态,递增i。
- 所有投票处理完毕后,如果c为未知状态,则说明不存在任何候选人的得票数过半,否则重新遍历数组v,统计候选人c的实际得票总数,如果c的得票数确实过半,则c就是最终结果。
这个做法的原理就是既然有出现次数超过一半的数字,那么我们把没出现一半的数字的次数进行抵消,出现一半以上的数字仍然不会被完全消除掉。
比如对于数据[1,2,1,1,3,1,4,4]
i 1 2 3 4 5 6 7 8
v[i] 1 2 1 1 3 1 4 4
c 1 ? 1 1 1 1 1 ?
t 1 0 1 2 1 2 1 0
程序运行的最终结果,c处于未知状态,说明对于投票数组v,不存在任何候选人的得票数过半。
如果v[1…9]={1,2,1,1,3,1,4,4,1},此时c的最后状态为1,重新遍历数组v,查看候选人1的得票数是否确实过半,统计结果1出现了5次,大于9/2,所以候选人1的票数过半。
因为题目中已经保证了存在数据出现过半。所以结尾的c那个元素一定不是不确定状态,直接返回就好。
C++代码如下:
class Solution {
public:
int majorityElement(vector<int>& nums) {
int c = -1;
int t = 0;
for (int n : nums) {
if (t == 0) {
c = n;
t = 1;
} else {
if (n == c) {
++t;
} else {
--t;
}
}
}
return c;
}
};
python版本代码如下:
class Solution(object):
def majorityElement(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
m = cm = 0
for num in nums:
if m == num:
cm += 1
elif cm == 0:
m = num
cm = 1
else:
cm -= 1
return m
Java代码:
public class Solution {
public int majorityElement(int[] nums) {
int candidate=nums[0];
int count=0;
for(int i=0;i<nums.length;i++){
if(count==0){
candidate=nums[i];
count++;
continue;
}
if(candidate==nums[i]){
count++;
}else{
count--;
if(count==0){
candidate=-1;
}
}
}
return candidate;
}
}
位运算统计位数
位操作法: 我们需要32次迭代, 每一次计算所有n个数的第i位的1的个数。
由于众数一定存在,那么或者1的个数0的个数多,或者反过来(但绝不会相同)。
众数的第i位一定是计数较多数字(1或0)。
这个题需要注意的是如何设置一个int的指定位是1:或上一个该指定为是1其余位是0的数字即可。
时间复杂度 = O(n).
一、指定的某一位数置1
宏 #define setbit(x,y) x|=(1<<y)
二、指定的某一位数置0
宏 #define clrbit(x,y) x&=~(1<<y)
三、指定的某一位数取反
宏 #define reversebit(x,y) x^=(1<<y)
三、获取的某一位的值
宏 #define getbit(x,y) ((x) >> (y)&1)
C++代码如下:
class Solution {
public:
int majorityElement(vector<int>& nums) {
const int N = nums.size();
int res = 0;
for (int i = 0; i < 32; ++i) {
int mask = 1 << i;
int onecount = 0;
for (int n : nums) {
if (n & mask) {
++onecount;
}
}
if (onecount > N / 2)
res |= mask;
}
return res;
}
};
相似题目
参考资料
多数派问题
https://blog.csdn.net/qq_37858386/article/details/78419911
日期
2016/5/1 0:00:49
2018 年 10 月 29 日 —— 美好的一周又开始了
2018 年 11 月 11 日 —— 剁手节快乐
【LeetCode】169. Majority Element 解题报告(Java & Python & C+)的更多相关文章
- LeetCode 169 Majority Element 解题报告
题目要求 Given an array of size n, find the majority element. The majority element is the element that a ...
- LeetCode 169. Majority Element解题方法
题目: Given an array of size n, find the majority element. The majority element is the element that ap ...
- 【LeetCode】162. Find Peak Element 解题报告(Python)
[LeetCode]162. Find Peak Element 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/problems/ ...
- 【LeetCode】120. Triangle 解题报告(Python)
[LeetCode]120. Triangle 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址htt ...
- [LeetCode] 169. Majority Element 多数元素
Given an array of size n, find the majority element. The majority element is the element that appear ...
- leetcode 169. Majority Element 、229. Majority Element II
169. Majority Element 求超过数组个数一半的数 可以使用hash解决,时间复杂度为O(n),但空间复杂度也为O(n) class Solution { public: int ma ...
- Leetcode#169. Majority Element(求众数)
题目描述 给定一个大小为 n 的数组,找到其中的众数.众数是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素. 你可以假设数组是非空的,并且给定的数组总是存在众数. 示例 1: 输入: [3,2,3] ...
- 23. leetcode 169. Majority Element
169. Majority Element Given an array of size n, find the majority element. The majority element is t ...
- Java for LeetCode 169 Majority Element
Given an array of size n, find the majority element. The majority element is the element that appear ...
随机推荐
- 33、搜索旋转排序数组 | 算法(leetode,附思维导图 + 全部解法)300题
零 标题:算法(leetode,附思维导图 + 全部解法)300题之(33)搜索旋转排序数组 一 题目描述! 题目描述 二 解法总览(思维导图) 三 全部解法 1 方案1 1)代码: // 方案1 & ...
- MybatisPlus入门程序
参考资料:MybatisPlus官网 环境搭建 创建数据库 CREATE DATABASE `mybatisplus` USE `mybatisplus` CREATE TABLE `user ...
- IPFS是什么?IPFS原理、IPFS存储
以下内容调研截止到2021/11/5日 IPFS简介 IPFS是一种内容可寻址.点对点.分布式文件系统.IPFS采用内容-地址寻址技术,即通过文件内容进行检索而不是通过文件的网络地址.简单来说,就是对 ...
- 巩固javaweb第十二天
巩固内容: HTML 图像- 图像标签( <img>)和源属性(Src) 在 HTML 中,图像由<img> 标签定义. <img> 是空标签,意思是说,它只包含属 ...
- 商业爬虫学习笔记day1
day1 一. HTTP 1.介绍: https://www.cnblogs.com/vamei/archive/2013/05/11/3069788.html http://blog.csdn.ne ...
- Equinox OSGi服务器应用程序的配置步骤 (支持JSP页面)
本文介绍在Eclipse里如何配置一个简单的基于Eclipse Equinox OSGi实现的Web应用程序,在它的基础上可以构造更加复杂的应用,本文使用的是Eclipse 3.3.1版本,如果你的E ...
- 使用$.ajax方式实现页面异步访问,局部更新的效果
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- 【HarmonyOS】【DevEco Studio】NOTE05:PageAbility生命周期的呈现
NOTE05:PageAbility生命周期的呈现 基本界面设置 创建Slice与对应xml BarAbilitySlice package com.example.myapplication.sli ...
- intelliJ破解及JavaEE搭建
intellij2020.3破解 转载自https://www.exception.site/essay/how-to-free-use-intellij-idea-2019-3 第一步: 下载最新的 ...
- Web容器(tomcat服务器)处理JSP文件请求的三个阶段
Web容器(tomcat服务器)处理JSP文件请求的三个阶段 翻译:编写好的jsp文件被web容器中的jsp引擎转换成java源码. 编译:翻译成java源码的jsp文件会被编译成可被计算机执行的字节 ...