作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/


题目地址:https://leetcode.com/problems/minimum-index-sum-of-two-lists/description/

题目描述

Suppose Andy and Doris want to choose a restaurant for dinner, and they both have a list of favorite restaurants represented by strings.

You need to help them find out their common interest with the least list index sum. If there is a choice tie between answers, output all of them with no order requirement. You could assume there always exists an answer.

Example 1:

Input:
["Shogun", "Tapioca Express", "Burger King", "KFC"]
["Piatti", "The Grill at Torrey Pines", "Hungry Hunter Steakhouse", "Shogun"]
Output: ["Shogun"]
Explanation: The only restaurant they both like is "Shogun".

Example 2:

Input:
["Shogun", "Tapioca Express", "Burger King", "KFC"]
["KFC", "Shogun", "Burger King"]
Output: ["Shogun"]
Explanation: The restaurant they both like and have the least index sum is "Shogun" with index sum 1 (0+1).

Note:

  1. The length of both lists will be in the range of [1, 1000].
  2. The length of strings in both lists will be in the range of [1, 30].
  3. The index is starting from 0 to the list length minus 1.
  4. No duplicates in both lists.

题目大意

找出两个列表中相同的元素,并且需要保证输出的是在两个列表中索引和最小的元素。如果这种元素多次出现,那么应该都输出。

解题方法

方法一:找到公共元素再求索引和

太蠢的想法,直接找出两个列表公共的元素,然后遍历公共元素,把公共元素在两个列表的位置的和求出来。注意题目中是要求如果和相等,那么,把所有和相等的都放到结果列表里。

需要一个变量存储当前的最小的序号和,然后维护这个变量。当变量更新的时候,要初始化结果列表。

这样的做法会反复的调用index方法,时间比较慢,超过14%的提交。

class Solution(object):
def findRestaurant(self, list1, list2):
"""
:type list1: List[str]
:type list2: List[str]
:rtype: List[str]
"""
commons = [word for word in list1 if word in list2]
answer = []
smallest = 1000000
for common in commons:
index1 = list1.index(common)
index2 = list2.index(common)
index = index1 + index2
if smallest > index:
smallest = index
answer = [common]
elif smallest == index:
answer.append(common)
return answer

方法一就慢在反复的求index,所以可以使用字典保存两个list中的每个元素的序号,然后从字典中查找序号就行。这种做法超过65%的提交。

class Solution(object):
def findRestaurant(self, list1, list2):
"""
:type list1: List[str]
:type list2: List[str]
:rtype: List[str]
"""
dic1 = {word:ind for ind,word in enumerate(list1)}
dic2 = {word:ind for ind,word in enumerate(list2)}
answer = []
smallest = 1000000
for word in dic1:
if word in dic2:
_sum = dic1[word] + dic2[word]
if smallest > _sum:
smallest = _sum
answer = [word]
elif smallest == _sum:
answer.append(word)
return answer

方法二:索引求和,使用堆弹出最小元素

同样使用的是字典,保存的其实是两个里面共同出现的元素,然后求元素的索引和。需要使用小根堆把最小的索引和弹出来。因为可能有多个结果,所以需要保存所有的索引等于最小索引的元素。

class Solution:
def findRestaurant(self, list1, list2):
"""
:type list1: List[str]
:type list2: List[str]
:rtype: List[str]
"""
interest = dict()
for i, l in enumerate(list1):
interest[l] = [i, 100000]
for j, l in enumerate(list2):
if l in interest:
interest[l][1] = j
heap = [(sum(v), l) for l, v in interest.items()]
heapq.heapify(heap)
res = []
smallest = -1
while heap:
cursum, curl = heapq.heappop(heap)
if smallest == -1:
smallest = cursum
if smallest == cursum:
res.append(curl)
else:
break
return res

日期

2018 年 1 月 23 日
2018 年 11 月 16 日 —— 又到周五了!

【LeetCode】599. Minimum Index Sum of Two Lists 解题报告(Python)的更多相关文章

  1. LeetCode 599. Minimum Index Sum of Two Lists (从两个lists里找到相同的并且位置总和最靠前的)

    Suppose Andy and Doris want to choose a restaurant for dinner, and they both have a list of favorite ...

  2. 【Leetcode_easy】599. Minimum Index Sum of Two Lists

    problem 599. Minimum Index Sum of Two Lists 题意:给出两个字符串数组,找到坐标位置之和最小的相同的字符串. 计算两个的坐标之和,如果与最小坐标和sum相同, ...

  3. [LeetCode&Python] Problem 599. Minimum Index Sum of Two Lists

    Suppose Andy and Doris want to choose a restaurant for dinner, and they both have a list of favorite ...

  4. 599. Minimum Index Sum of Two Lists

    Suppose Andy and Doris want to choose a restaurant for dinner, and they both have a list of favorite ...

  5. 599. Minimum Index Sum of Two Lists(easy)

    Suppose Andy and Doris want to choose a restaurant for dinner, and they both have a list of favorite ...

  6. 599. Minimum Index Sum of Two Lists两个餐厅列表的索引和最小

    [抄题]: Suppose Andy and Doris want to choose a restaurant for dinner, and they both have a list of fa ...

  7. LC 599. Minimum Index Sum of Two Lists

    题目描述 Suppose Andy and Doris want to choose a restaurant for dinner, and they both have a list of fav ...

  8. LeetCode 599: 两个列表的最小索引总和 Minimum Index Sum of Two Lists

    题目: 假设 Andy 和 Doris 想在晚餐时选择一家餐厅,并且他们都有一个表示最喜爱餐厅的列表,每个餐厅的名字用字符串表示. Suppose Andy and Doris want to cho ...

  9. [LeetCode] Minimum Index Sum of Two Lists 两个表单的最小坐标和

    Suppose Andy and Doris want to choose a restaurant for dinner, and they both have a list of favorite ...

随机推荐

  1. 关于ARM的PC指针(什么时候PC+8,PC+4,PC-4,PC-8)转

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.                                                 ...

  2. 解决UE4项目编辑器启动时出现LogLinker: Warning: Failed to load '/Game/FirstPersonBP/FirstPersonOverview': Can't find file.

    UE4版本:4.24.3源码编译版本 Windows10 + VS2019环境 LogLinker: Warning: Failed to load '/Game/FirstPersonBP/Firs ...

  3. hbase参数调优

    @ 目录 HBase参数调优 hbase.regionserver.handler.count hbase.hregion.max.filesize hbase.hregion.majorcompac ...

  4. Hbase(6)【Java Api Phoenix操作Hbase】

    目录 两种方式操作Phoenix 1.Thick Driver 2.Thin Driver 3.注意事项 两种方式操作Phoenix 官网:http://phoenix.apache.org/faq. ...

  5. 【leetcode】653. Two Sum IV - Input is a BST

    Given the root of a Binary Search Tree and a target number k, return true if there exist two element ...

  6. HDFS初探之旅(一)

    1.HDFS简介                                                                                            ...

  7. SpringCloud微服务服务间调用之OpenFeign介绍

    开发微服务,免不了需要服务间调用.Spring Cloud框架提供了RestTemplate和FeignClient两个方式完成服务间调用,本文简要介绍如何使用OpenFeign完成服务间调用. Op ...

  8. 一、手把手教你docker搭建fastDFS文件上传下载服务器

    在搭建fastDFS文件上传下载服务器之前,你需要准备的有一个可连接的linux服务器,并且该linux服务器上已经安装了docker,若还有没安装docker的,先百度自行安装docker. 1.执 ...

  9. 【C/C++】子数组的最大累加和问题

    #include <bits/stdc++.h> using namespace std; class Solution { public: /** * max sum of the su ...

  10. Flink Exactly-once 实现原理解析

    关注公众号:大数据技术派,回复"资料",领取1024G资料. 这一课时我们将讲解 Flink "精确一次"的语义实现原理,同时这也是面试的必考点. Flink ...