正题

题目链接:http://www.ybtoj.com.cn/problem/763


题目大意

给出\(n\)个点的一棵树,每个\(d_i=0\)的点每秒会产生一个士兵往根节点走,走到一个节点让一个节点\(d_i\)减一(为\(0\)就不管)。

求需要多久才能让所有点的\(d\)值变为\(0\)

\(1\leq n\leq10^5,1\leq d_i\leq 10^8\)


解题思路

考虑求出每个点\(d_i\)值变成\(0\)的时间\(t_i\)。

对于一个节点\(x\),\(dis_x\)表示根节点到\(x\)的距离,那么它在时刻\(T\)时的减少数量是

\[\sum_{y\in subtree_x}max\{T-t_y-dis_y+dis_x,0\}
\]

我们可以每次把新得到的\(t_y-dis_y\)压入线段树,然后每次合并上去后再在线段树上面二分出答案。

时间复杂度\(O(n\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e5+10,inf=2e8;
struct node{
ll to,next,w;
}a[N<<1];
ll n,tot,cnt,ans,ls[N],d[N],t[N],rt[N],dep[N];
void addl(ll x,ll y,ll w){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;a[tot].w=w;
return;
}
struct SegTree{
ll w[N<<6],c[N<<6],ls[N<<6],rs[N<<6];
void Change(ll &x,ll L,ll R,ll pos){
if(!x)x=++cnt;w[x]+=pos;c[x]++;
if(L==R)return;ll mid=(L+R)>>1;
if(pos<=mid)Change(ls[x],L,mid,pos);
else Change(rs[x],mid+1,R,pos);
return;
}
ll Ask(ll x,ll L,ll R,ll k,ll zc,ll zw){
if(L==R)return L;
ll mid=(L+R)>>1,tmp=mid*(c[ls[x]]+zc)-w[ls[x]]-zw;
if(tmp>=k)return Ask(ls[x],L,mid,k,zc,zw);
return Ask(rs[x],mid+1,R,k,zc+c[ls[x]],zw+w[ls[x]]);
}
ll Merge(ll x,ll y,ll l,ll r){
if(!x||!y)return x+y;
w[x]=w[x]+w[y];c[x]=c[x]+c[y];
if(l==r)return x;ll mid=(l+r)>>1;
ls[x]=Merge(ls[x],ls[y],l,mid);
rs[x]=Merge(rs[x],rs[y],mid+1,r);
return x;
}
}T;
void dfs(ll x,ll fa){
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(y==fa)continue;
dep[y]=dep[x]+a[i].w;dfs(y,x);
rt[x]=T.Merge(rt[x],rt[y],0,inf);
}
t[x]=max(0ll,T.Ask(rt[x],0,inf,d[x],0,0)-dep[x]);
T.Change(rt[x],0,inf,t[x]+dep[x]);
ans=max(ans,t[x]);return;
}
signed main()
{
// freopen("conquer.in","r",stdin);
// freopen("conquer.out","w",stdout);
scanf("%lld",&n);
for(ll i=1;i<=n;i++)
scanf("%lld",&d[i]);
for(ll i=1;i<n;i++){
ll x,y,w;
scanf("%lld%lld%lld",&x,&y,&w);
addl(x,y,w);addl(y,x,w);
}
dfs(1,1);
printf("%lld\n",ans);
return 0;
}

YbtOJ#763-攻城略池【线段树合并】的更多相关文章

  1. 【HNOI】 攻城略池 tree-dp

    [题目大意] 给定一棵树,边有边权,每个节点有一些兵,现在叶子节点在0时刻被占领,并且任意节点在x被占领,那么从x+1开始,每单位时间产生一个兵,兵会顺着父亲节点一直走到根(1),其中每经过一个节点, ...

  2. BZOJ_3252_攻略_线段树+dfs序

    BZOJ_3252_攻略_线段树+dfs序 Description 题目简述:树版[k取方格数] 众所周知,桂木桂马是攻略之神,开启攻略之神模式后,他可以同时攻略k部游戏.今天他得到了一款新游戏< ...

  3. YbtOJ#532-往事之树【广义SAM,线段树合并】

    正题 题目链接:https://www.ybtoj.com.cn/problem/532 题目大意 给出\(n\)个点的一个\(Trie\)树,定义\(S_x\)表示节点\(x\)代表的字符串 求$$ ...

  4. 【洛谷4770/UOJ395】[NOI2018]你的名字(后缀数组_线段树合并)

    题目: 洛谷4770 UOJ395 分析: 一个很好的SAM应用题-- 一句话题意:给定一个字符串\(S\).每次询问给定字符串\(T\)和两个整数\(l\).\(r\),求\(T\)有多少个本质不同 ...

  5. 权值线段树&线段树合并

    权值线段树 所谓权值线段树,就是一种维护值而非下标的线段树,我个人倾向于称呼它为值域线段树. 举个栗子:对于一个给定的数组,普通线段树可以维护某个子数组中数的和,而权值线段树可以维护某个区间内数组元素 ...

  6. NOI 2018 你的名字 (后缀自动机+线段树合并)

    题目大意:略 令$ION2017=S,ION2018=T$ 对$S$建$SAM$,每次都把$T$放进去跑,求出结尾是i的前缀串,能匹配上$S$的最长后缀长度为$f_{i}$ 由于$T$必须在$[l,r ...

  7. UOJ#400. 【CTSC2018】暴力写挂 边分治 线段树合并

    原文链接 www.cnblogs.com/zhouzhendong/p/UOJ400.html 前言 老年选手没有码力. 题解 先对第一棵树进行边分治,然后,设点 x 到分治中心的距离为 $D[x]$ ...

  8. [XJOI NOI2015模拟题13] C 白黑树 【线段树合并】

    题目链接:XJOI - NOI2015-13 - C 题目分析 使用神奇的线段树合并在 O(nlogn) 的时间复杂度内解决这道题目. 对树上的每个点都建立一棵线段树,key是时间(即第几次操作),动 ...

  9. [BZOJ 2212] [Poi2011] Tree Rotations 【线段树合并】

    题目链接:BZOJ - 2212 题目分析 子树 x 内的逆序对个数为 :x 左子树内的逆序对个数 + x 右子树内的逆序对个数 + 跨越 x 左子树与右子树的逆序对. 左右子树内部的逆序对与是否交换 ...

  10. BZOJ 3307: 雨天的尾巴( LCA + 线段树合并 )

    路径(x, y) +z : u处+z, v处+z, lca(u,v)处-z, fa(lca)处-z, 然后dfs一遍, 用线段树合并. O(M log M + M log N). 复杂度看起来不高, ...

随机推荐

  1. Linux放大缩小字体的快捷键

    linux终端窗口字体缩放快捷键 环境:linux, 打开终端, 'ctrl' + '-'字体缩小,一行显示更多的内容 'ctrl' + 'shift' + '+'字体变大 ctl+shift+(+) ...

  2. 多线程之旅(9)_如何安全的取消正在执行的线程——附C#源码

    参考网址: https://blog.csdn.net/yangwohenmai1/article/details/90404497 当线程能流畅安全的自动运行后,我们就要考虑一些更风骚的操作,就是如 ...

  3. 单例对象 (Singleton)设计模式

    单例的目的是为了保证运行时Singleton类只有唯一的一个实例,用于一些较大开销的操作. 饿汉式(没有线程安全问题): ' 由于使用static关键字进行了修饰,只能获取到一个对象,从而达到了单例, ...

  4. Java编码的问题

    <转> 由于JDK是国际版的,在编译的时候,如果我们没有用-encoding参数指定我们的Java源程序的编码格式,则javac.exe首先获得我们操作系统默认采用的编码格式,也即在编译j ...

  5. Jmeter的默认字体和窗口的设置方法(一次改动,永久生效!!!)

    因为每次打开jmeter看到的界面不如意,而且会影响工作发挥和效率,为了给大家带来良好的工作体验,为此给出最完美的设置方法,如下: 第一步: 找到jmeter所在目录--->bin---> ...

  6. rabbitMq消费死循环

    消费过程发生错误容易造成死循环 1.控制重发次数 2.try+catch+手动ack 3.try+catch+手动ack+死信队列(重试次数就失效了,因为捕捉确认后被打入了相应的死信队列) void ...

  7. Git入门配置

    1.账户注册: 无论是GitHub还是码云(下称Gitee),要使用他们,我们都需要先注册账户,已有账户的可以跳过此步骤. Gitee GitHub 2.创建仓库: a.创建远程仓库 登入Gitee后 ...

  8. 记一次 .NET 某新能源汽车锂电池检测程序 UI挂死分析

    更多高质量干货:参见我的 GitHub: dotnetfly 一:背景 1. 讲故事 这世间事说来也奇怪,近两个月有三位朋友找到我,让我帮忙分析下他的程序hangon现象,这三个dump分别涉及: 医 ...

  9. [考试总结]noip模拟43

    这个题目出的还是很偷懒.... 第一题...第二题...第三题...四.... 好吧... 这几次考得都有些问题,似乎可能是有些疲惫,脑袋也是转不太动,考完总觉得自己是能力的问题,但是改一分钟之后会发 ...

  10. 将两个byte型拼接成16位二进制,再转化为十进制

    short s = 0; //一个16位整形变量,初值为 0000 0000 0000 0000 byte b1 = 1; //一个byte的变量,作为转换后的高8位,假设初值为 0000 0001 ...