正题

题目链接:http://www.ybtoj.com.cn/problem/763


题目大意

给出\(n\)个点的一棵树,每个\(d_i=0\)的点每秒会产生一个士兵往根节点走,走到一个节点让一个节点\(d_i\)减一(为\(0\)就不管)。

求需要多久才能让所有点的\(d\)值变为\(0\)

\(1\leq n\leq10^5,1\leq d_i\leq 10^8\)


解题思路

考虑求出每个点\(d_i\)值变成\(0\)的时间\(t_i\)。

对于一个节点\(x\),\(dis_x\)表示根节点到\(x\)的距离,那么它在时刻\(T\)时的减少数量是

\[\sum_{y\in subtree_x}max\{T-t_y-dis_y+dis_x,0\}
\]

我们可以每次把新得到的\(t_y-dis_y\)压入线段树,然后每次合并上去后再在线段树上面二分出答案。

时间复杂度\(O(n\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e5+10,inf=2e8;
struct node{
ll to,next,w;
}a[N<<1];
ll n,tot,cnt,ans,ls[N],d[N],t[N],rt[N],dep[N];
void addl(ll x,ll y,ll w){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;a[tot].w=w;
return;
}
struct SegTree{
ll w[N<<6],c[N<<6],ls[N<<6],rs[N<<6];
void Change(ll &x,ll L,ll R,ll pos){
if(!x)x=++cnt;w[x]+=pos;c[x]++;
if(L==R)return;ll mid=(L+R)>>1;
if(pos<=mid)Change(ls[x],L,mid,pos);
else Change(rs[x],mid+1,R,pos);
return;
}
ll Ask(ll x,ll L,ll R,ll k,ll zc,ll zw){
if(L==R)return L;
ll mid=(L+R)>>1,tmp=mid*(c[ls[x]]+zc)-w[ls[x]]-zw;
if(tmp>=k)return Ask(ls[x],L,mid,k,zc,zw);
return Ask(rs[x],mid+1,R,k,zc+c[ls[x]],zw+w[ls[x]]);
}
ll Merge(ll x,ll y,ll l,ll r){
if(!x||!y)return x+y;
w[x]=w[x]+w[y];c[x]=c[x]+c[y];
if(l==r)return x;ll mid=(l+r)>>1;
ls[x]=Merge(ls[x],ls[y],l,mid);
rs[x]=Merge(rs[x],rs[y],mid+1,r);
return x;
}
}T;
void dfs(ll x,ll fa){
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(y==fa)continue;
dep[y]=dep[x]+a[i].w;dfs(y,x);
rt[x]=T.Merge(rt[x],rt[y],0,inf);
}
t[x]=max(0ll,T.Ask(rt[x],0,inf,d[x],0,0)-dep[x]);
T.Change(rt[x],0,inf,t[x]+dep[x]);
ans=max(ans,t[x]);return;
}
signed main()
{
// freopen("conquer.in","r",stdin);
// freopen("conquer.out","w",stdout);
scanf("%lld",&n);
for(ll i=1;i<=n;i++)
scanf("%lld",&d[i]);
for(ll i=1;i<n;i++){
ll x,y,w;
scanf("%lld%lld%lld",&x,&y,&w);
addl(x,y,w);addl(y,x,w);
}
dfs(1,1);
printf("%lld\n",ans);
return 0;
}

YbtOJ#763-攻城略池【线段树合并】的更多相关文章

  1. 【HNOI】 攻城略池 tree-dp

    [题目大意] 给定一棵树,边有边权,每个节点有一些兵,现在叶子节点在0时刻被占领,并且任意节点在x被占领,那么从x+1开始,每单位时间产生一个兵,兵会顺着父亲节点一直走到根(1),其中每经过一个节点, ...

  2. BZOJ_3252_攻略_线段树+dfs序

    BZOJ_3252_攻略_线段树+dfs序 Description 题目简述:树版[k取方格数] 众所周知,桂木桂马是攻略之神,开启攻略之神模式后,他可以同时攻略k部游戏.今天他得到了一款新游戏< ...

  3. YbtOJ#532-往事之树【广义SAM,线段树合并】

    正题 题目链接:https://www.ybtoj.com.cn/problem/532 题目大意 给出\(n\)个点的一个\(Trie\)树,定义\(S_x\)表示节点\(x\)代表的字符串 求$$ ...

  4. 【洛谷4770/UOJ395】[NOI2018]你的名字(后缀数组_线段树合并)

    题目: 洛谷4770 UOJ395 分析: 一个很好的SAM应用题-- 一句话题意:给定一个字符串\(S\).每次询问给定字符串\(T\)和两个整数\(l\).\(r\),求\(T\)有多少个本质不同 ...

  5. 权值线段树&线段树合并

    权值线段树 所谓权值线段树,就是一种维护值而非下标的线段树,我个人倾向于称呼它为值域线段树. 举个栗子:对于一个给定的数组,普通线段树可以维护某个子数组中数的和,而权值线段树可以维护某个区间内数组元素 ...

  6. NOI 2018 你的名字 (后缀自动机+线段树合并)

    题目大意:略 令$ION2017=S,ION2018=T$ 对$S$建$SAM$,每次都把$T$放进去跑,求出结尾是i的前缀串,能匹配上$S$的最长后缀长度为$f_{i}$ 由于$T$必须在$[l,r ...

  7. UOJ#400. 【CTSC2018】暴力写挂 边分治 线段树合并

    原文链接 www.cnblogs.com/zhouzhendong/p/UOJ400.html 前言 老年选手没有码力. 题解 先对第一棵树进行边分治,然后,设点 x 到分治中心的距离为 $D[x]$ ...

  8. [XJOI NOI2015模拟题13] C 白黑树 【线段树合并】

    题目链接:XJOI - NOI2015-13 - C 题目分析 使用神奇的线段树合并在 O(nlogn) 的时间复杂度内解决这道题目. 对树上的每个点都建立一棵线段树,key是时间(即第几次操作),动 ...

  9. [BZOJ 2212] [Poi2011] Tree Rotations 【线段树合并】

    题目链接:BZOJ - 2212 题目分析 子树 x 内的逆序对个数为 :x 左子树内的逆序对个数 + x 右子树内的逆序对个数 + 跨越 x 左子树与右子树的逆序对. 左右子树内部的逆序对与是否交换 ...

  10. BZOJ 3307: 雨天的尾巴( LCA + 线段树合并 )

    路径(x, y) +z : u处+z, v处+z, lca(u,v)处-z, fa(lca)处-z, 然后dfs一遍, 用线段树合并. O(M log M + M log N). 复杂度看起来不高, ...

随机推荐

  1. Visual Studio调试器指南---多线程应用程序调试(一)

    线程是操作系统向其授予处理器时间的指令序列. 在操作系统中运行的每个进程都包含至少一个线程. 包含多个线程的进程称为多线程.有多个处理器.多核处理器或超线程进程的计算机可以同时运行多个线程. 使用多个 ...

  2. C++ 矩形交集和并集的面积-离散化

    //离散化,x,y坐标分别按从小到大排序 //离散化 //1.首先分离出所有的横坐标和纵坐标分别按升序存入数组X[ ]和Y[ ]中. //2. 设数组XY[ ][ ].对于每个矩形(x1,y1)(x2 ...

  3. Mysql 中隐式转换

    案例一:条件字段函数操作 假设你现在维护了一个交易系统,其中交易记录表 tradelog 包含交易流水号(tradeid).交易员 id(operator).交易时间(t_modified)等字段.为 ...

  4. 使用Eclipse搭建SSM框架(Spring + Spring MVC + Mybatis)

    1.创建项目 1)打开Eclipse,点击File --> New --> Other 2)输入maven,找到Maven Project 3)然后一直按Next,直到出现一下界面: 4) ...

  5. T-SQL——关于跨库连接查询

    目录 0. 同一台服务器不同数据库 1. 使用跨库查询函数--OpenDataSource() 2. 使用链接服务器(Linking Server) 3. 使用OpenDataSource()函数和链 ...

  6. 跟着华为,学数字化转型(8):组织转型之业务IT一体化

    数字化时代,技术已经成了企业发展的重要驱动力,是转型中的企业不可或缺的力量.那采用什么样的组织结构,才能发挥出技术能力的最大价值呢?华为经历了多种组织形式,最终得出的结论是业务IT一体化组织是最合适的 ...

  7. 阿里云服务器上部署java项目(安装jdk,tomcat)

    安装JDK a.执行下面的yum指令安装,无线配置环境变量. 1.yum -y update #首先更新一下YUM源2.yum list Java* ---------#列出所有的JDK 3.yum ...

  8. 在Excel中怎样才能在某一行前面一次插入多行?

    你在要插入的行以下选中多少行,点插入,就能插入多少行. ​

  9. Java并发之AQS原理解读(二)

    上一篇: Java并发之AQS原理解读(一) 前言 本文从源码角度分析AQS独占锁工作原理,并介绍ReentranLock如何应用. 独占锁工作原理 独占锁即每次只有一个线程可以获得同一个锁资源. 获 ...

  10. Linux CentOS7 安装配置 IPtables

    2021-08-11 1. 前言 防火墙其实就是实现 Linux 下访问控制功能的,分为硬件和软件的防火墙两种类型.无论在何网络中,防火墙工作的地方一定是网络的边缘.防火墙的策略.规则就是去定义防火墙 ...