[luogu6702]Path
维护每一个点到根路径的异或和(记作$d_{k}$),根据异或自反性,$(x,y)$的异或和即$d_{x}\oplus d_{y}$
考虑两条路径的lca,选择其中深度较大的点,另一条路径必然在其子树外,枚举这个点,分别统计子树内外异或和最大的路径
对于子树内,用启发式合并trie树,在合并时顺便统计出答案(枚举较小的一棵trie树中的点,在另一颗trie树中查询),时间复杂度为$o(n\log_{2}n\log_{2}w)$
对于子树外,任选一条全局异或和最大的路径$(p,q)$,然后将其以$p$为根建树(子树内也需要以$p$为根考虑)
将所有点分为两类:1.子树内不含有$q$;2.子树内含有$q$,对于前者必然选择$(p,q)$这条路径,否则也就是从$p$递归到$q$为止的时候
此时,暴力合并子树外的节点(即父亲子树外的节点与父亲子树内除自己外的节点),不难发现每一个节点至多合并一次,暴力合并即可做到$o(n\log_{2}w)$
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 30005
4 int E,n,x,y,z,mx,now_mx,ans,head[N],d[N],vis[N],f[N];
5 struct ji{
6 int nex,to,len;
7 }edge[N<<1];
8 struct trie{
9 int V;
10 vector<int>v,ch[2];
11 void New(){
12 ch[0].push_back(-1);
13 ch[1].push_back(-1);
14 V++;
15 }
16 void init(){
17 V=0;
18 v.clear(),ch[0].clear(),ch[1].clear();
19 New();
20 }
21 void add(int x){
22 v.push_back(x);
23 int k=0;
24 for(int i=29;i>=0;i--){
25 int p=((x&(1<<i))>0);
26 if (ch[p][k]<0){
27 ch[p][k]=V;
28 New();
29 assert(ch[p][k]>=0);
30 }
31 k=ch[p][k];
32 }
33 }
34 int query(int x){
35 if (!v.size())return 0;
36 int k=0,ans=0;
37 for(int i=29;i>=0;i--){
38 int p=((x&(1<<i))==0);
39 if (ch[p][k]<0)p^=1;
40 else ans+=(1<<i);
41 k=ch[p][k];
42 }
43 return ans;
44 }
45 int merge(int x){
46 add(x);
47 return query(x);
48 }
49 }T[N];
50 int find(int k){
51 if (k==f[k])return k;
52 return f[k]=find(f[k]);
53 }
54 int merge(int x,int y){
55 x=find(x),y=find(y);
56 assert(x!=y);
57 if (T[x].v.size()<T[y].v.size())swap(x,y);
58 f[y]=x;
59 int ans=0;
60 for(int i=0;i<T[y].v.size();i++)ans=max(ans,T[x].merge(T[y].v[i]));
61 T[y].init();
62 return ans;
63 }
64 void add(int x,int y,int z){
65 edge[E].nex=head[x];
66 edge[E].to=y;
67 edge[E].len=z;
68 head[x]=E++;
69 }
70 void dfs(int k,int fa,int s){
71 d[k]=s;
72 f[k]=fa;
73 for(int i=head[k];i!=-1;i=edge[i].nex)
74 if (edge[i].to!=fa)dfs(edge[i].to,k,s^edge[i].len);
75 }
76 void tot(int k,int fa){
77 now_mx=max(now_mx,T[0].merge(d[k]));
78 for(int i=head[k];i!=-1;i=edge[i].nex)
79 if (edge[i].to!=fa)tot(edge[i].to,k);
80 }
81 void calc(int k,int fa){
82 int si=T[k].merge(d[k]),so=mx;
83 if (vis[k]){
84 so=now_mx;
85 now_mx=max(now_mx,T[0].merge(d[k]));
86 for(int i=head[k];i!=-1;i=edge[i].nex)
87 if (!vis[edge[i].to])tot(edge[i].to,k);
88 }
89 for(int i=head[k];i!=-1;i=edge[i].nex)
90 if (edge[i].to!=fa){
91 calc(edge[i].to,k);
92 si=max(si,merge(k,edge[i].to));
93 }
94 if (fa)ans=max(ans,si+so);
95 }
96 int main(){
97 scanf("%d",&n);
98 memset(head,-1,sizeof(head));
99 for(int i=1;i<n;i++){
100 scanf("%d%d%d",&x,&y,&z);
101 add(x,y,z);
102 add(y,x,z);
103 }
104 dfs(1,0,0);
105 T[0].init();
106 for(int i=1;i<=n;i++)mx=max(mx,T[0].merge(d[i]));
107 for(int i=1;i<=n;i++)
108 if (T[0].query(d[i])==mx){
109 x=i;
110 break;
111 }
112 for(int i=1;i<=n;i++)
113 if ((d[x]^d[i])==mx){
114 y=i;
115 break;
116 }
117 dfs(x,0,0);
118 while (y){
119 vis[y]=1;
120 y=f[y];
121 }
122 for(int i=0;i<=n;i++)T[i].init();
123 for(int i=1;i<=n;i++)f[i]=i;
124 calc(x,0);
125 printf("%d",ans);
126 }
[luogu6702]Path的更多相关文章
- NodeJs之Path
Path模块 NodeJs提供的Path模块,使得我们可以对文件路径进行简单的操作. API var path = require('path'); var path_str = '\\Users\\ ...
- 【原】实时渲染中常用的几种Rendering Path
[原]实时渲染中常用的几种Rendering Path 本文转载请注明出处 —— polobymulberry-博客园 本文为我的图形学大作业的论文部分,介绍了一些Rendering Path,比较简 ...
- Node.js:path、url、querystring模块
Path模块 该模块提供了对文件或目录路径处理的方法,使用require('path')引用. 1.获取文件路径最后部分basename 使用basename(path[,ext])方法来获取路径的最 ...
- VSCode调试go语言出现:exec: "gcc": executable file not found in %PATH%
1.问题描述 由于安装VS15 Preview 5,搞的系统由重新安装一次:在用vscdoe编译go语言时,出现以下问题: # odbcexec: "gcc": executabl ...
- Leetcode 笔记 113 - Path Sum II
题目链接:Path Sum II | LeetCode OJ Given a binary tree and a sum, find all root-to-leaf paths where each ...
- Leetcode 笔记 112 - Path Sum
题目链接:Path Sum | LeetCode OJ Given a binary tree and a sum, determine if the tree has a root-to-leaf ...
- Thinking in Unity3D:渲染管线中的Rendering Path
关于<Thinking in Unity3D> 笔者在研究和使用Unity3D的过程中,获得了一些Unity3D方面的信息,同时也感叹Unity3D设计之精妙.不得不说,笔者最近几年的 ...
- node之path模块
node之path模块 原文链接 //引用该模块 var path = require("path"); 1.路径解析,得到规范化的路径格式 对window系统,目录分隔为'', ...
- Linux系统修改PATH环境变量方法
在Linux安装一些软件通常要添加路径环境变量PATH.PATH环境变量通俗的讲就是把程序的路径"备案"到系统中,这样执行这些程序时就不需要输入完整路径,直接在bash输入程序名就 ...
随机推荐
- 微信小程序 开发 “婚礼邀请函”
成品展示: 5个页面 我们来讲解哈(上面地图位置随便定的点) 1.首页开发 一开始进来显示首页 然后默认开始播放背景音乐,这个背景音乐点击右上角图标可以暂停(有动画),然后点击新郎和新娘文字可以调到 ...
- 洛谷3233 HNOI2014(虚树+dp)
膜拜一发\(mts\_246,forever\_shi\) 这两位爷是真的无敌! 首先来看这个题,一看题目的数据范围和"关键点"字眼,我们就能得知这是一道虚树题 那就先一如既往的建 ...
- 关于C、Java、Python程序运行耗时及内存用量
最近没有刷题,而是在PTA找几个题目寻找有关程序输入流问题以及各种语言在运行时对计算机消耗内存的问题, 以免很多同学解题的时候发现自己做的对但是出现运行超时的问题:针对运行内存,肯定用C/C++的同学 ...
- SpringBoot 后端接收前端传值的方法
1.通过HttpServletRequest接收,适用于GET 和 POST请求方式 通过HttpServletRequest对象获取请求参数 @RestController @Reque ...
- gin 源码阅读(5) - 灵活的返回值处理
gin 源码阅读系列文章列表: gin 源码阅读(1) - gin 与 net/http 的关系 gin 源码阅读(2) - http请求是如何流入gin的? gin 源码阅读(3) - gin 路由 ...
- 【数据结构】<栈的应用>回文判断
通过栈与队列相关内容的学习,我们知道,栈是"先进后出"的线性表,而队列是"先进先出"的线性表.可以通过构造栈与队列来实现在这一算法.将要判断的字符序列依次压栈和 ...
- DOS命令和快捷键
- 微信小程序实现上拉和下拉加载更多
在上一篇文章中,我们知道了使用 scroll-view 可以实现上拉加载更多,但是由于 scroll-view 的限制,它无法实现下拉加载更多,这篇文章我们使用 view 组件来实现 上拉和下拉加载更 ...
- CSP-S2021幽寂
不管怎么说,这次比赛考的比这一段时间以来的模拟赛都难看 难受,但是也不想太表现出来,所以更难受.... 有点害怕会退役...... Day -6 前一天晚上回宿舍的时候和\(zxs\)一路,聊的过程中 ...
- 联赛膜你测试20 T1 Simple 题解 && NOIP2017 小凯的疑惑 题解(赛瓦维斯特定理)
前言: 数学题,对于我这种菜B还是需要多磨啊 Simple 首先它问不是好数的数量,可以转化为用总数量减去是好数的数量. 求"好数"的数量: 由裴蜀定理得,如果某个数\(i\)不能 ...