pytorch生成对抗示例

本文对ML(机器学习)模型的安全漏洞的认识,并将深入了解对抗性机器学习的热门话题。图像添加难以察觉的扰动会导致模型性能大不相同。通过图像分类器上的示例探讨该主题。使用第一种也是最流行的攻击方法之一,即快速梯度符号攻击算法(FGSM)来迷惑 MNIST 分类器。

1.威胁模型

对于上下文,有许多类别的对抗性攻击,每种攻击具有不同的目标和对攻击者知识的假设。总体目标是向输入数据添加最少量的扰动,引起期望的错误分类。对攻击者的知识有几种假设,其中两种是:白盒子和黑盒子。白盒攻击假定攻击者具有对模型的全部知识和访问权限,包括体系结构、输入、输出和权重。黑盒攻击,假设攻击者只能访问模型的输入和输出,并且对底层架构或权重一无所知。还有几种类型的目标,包括错误分类和源/目标错误分类。错误分类的目标,意味着攻击者只希望输出分类错误,但不关心新分类是什么。源/目标错误分类,意味着攻击者想要更改最初属于特定源类的图像,以便将其归类为特定目标类。

FGSM 攻击是一种白盒攻击,其目标是错误分类。有了这些背景信息,现在可以详细讨论攻击。

2.FGSMFast Gradient Sign Attack

快速梯度标志攻击(FGSM),是迄今为止最早和最受欢迎的对抗性攻击之一,由 Goodfellow 等人在[Explaining and Harnessing Adversarial Examples] (https://arxiv.org/abs/1412.6572)中提出,是一种简单但是有效的对抗样本生成算法。旨在通过利用模型学习的方式和渐变来攻击神经网络。想法很简单,攻击调整输入数据,以基于相同的反向传播梯度来最大化损失,而不是通过基于反向传播的梯度,调整权重来最小化损失。 换句话说,攻击是利用损失函数的梯度,然后调整输入数据以最大化损失。

在进入代码之前,先讲一下著名的 FGSM 熊猫示例并提取一些符号。

从图中可以看出,x是正确分类为“熊猫”的原始输入图像,y是x的基本事实标签, 代表模型参数,

是用于训练网络的损失。攻击是反向将梯度传播回输入数据以计算

。 然后,在一个方向上(即

)调整输入数据(图中

的或0.007),这将使损失最大化。当目标网络仍然明显是“熊猫”时,由此产生的

扰动图像被错误地分类为“长臂猿”。

3.实现

输入参数,定义被攻击的模型,然后编写攻击代码并运行一些测试。

3.1 引入相关包

from __future__ import print_function

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

from torchvision import datasets, transforms

import numpy as np

import matplotlib.pyplot as plt

3.2 输入

只有三个输入,定义如下: * epsilons:用于运行的epsilon值列表。在列表中保留0非常重要,因为表示原始测试集上的模型性能。而且,期望epsilon越大,扰动就越明显,但就降低模型精度方面而言攻击越有效。由于此处的数据范围为[0,1],因此epsilon值不应超过1。 * pretrained_model:pytorch/examples/mnist训练的预训练 MNIST 模型的路径。为简单起见,下载预训练模型。 * use_cuda:如果需要使用CUDA的布尔标志。带有CUDA的GPU并不重要,使用CPU不会花费太多时间。

epsilons = [0, .05, .1, .15, .2, .25, .3]

pretrained_model = "data/lenet_mnist_model.pth"

use_cuda=True

3.2 被攻击的模型

如上所述,受攻击的模型与pytorch/examples/mnist中的 MNIST 模型相同。可以训练并保存自己的 MNIST 模型,也可以下载并使用提供的模型。此处的 Net 定义和测试数据加载器已从 MNIST 示例中复制。目的是定义模型和数据加载器,然后初始化模型并加载预训练的权重。

# 定义LeNet模型

class Net(nn.Module):

def __init__(self):

super(Net, self).__init__()

self.conv1 = nn.Conv2d(1, 10, kernel_size=5)

self.conv2 = nn.Conv2d(10, 20, kernel_size=5)

self.conv2_drop = nn.Dropout2d()

self.fc1 = nn.Linear(320, 50)

self.fc2 = nn.Linear(50, 10)

def forward(self, x):

x = F.relu(F.max_pool2d(self.conv1(x), 2))

x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))

x = x.view(-1, 320)

x = F.relu(self.fc1(x))

x = F.dropout(x, training=self.training)

x = self.fc2(x)

return F.log_softmax(x, dim=1)

#声明 MNIST 测试数据集何数据加载

test_loader = torch.utils.data.DataLoader(

datasets.MNIST('../data', train=False, download=True, transform=transforms.Compose([

transforms.ToTensor(),

])),

batch_size=1, shuffle=True)

# 定义正在使用的设备

print("CUDA Available: ",torch.cuda.is_available())

device = torch.device("cuda" if (use_cuda and torch.cuda.is_available()) else "cpu")

# 初始化网络

model = Net().to(device)

# 加载已经预训练的模型

model.load_state_dict(torch.load(pretrained_model, map_location='cpu'))

# 在评估模式下设置模型。在这种情况下,这适用于Dropout图层

model.eval()

  • 输出结果:

Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ../data/MNIST/raw/train-images-idx3-ubyte.gz

Extracting ../data/MNIST/raw/train-images-idx3-ubyte.gz

Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ../data/MNIST/raw/train-labels-idx1-ubyte.gz

Extracting ../data/MNIST/raw/train-labels-idx1-ubyte.gz

Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ../data/MNIST/raw/t10k-images-idx3-ubyte.gz

Extracting ../data/MNIST/raw/t10k-images-idx3-ubyte.gz

Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ../data/MNIST/raw/t10k-labels-idx1-ubyte.gz

Extracting ../data/MNIST/raw/t10k-labels-idx1-ubyte.gz

Processing...

Done!

CUDA Available:  True

3.3 FGSM算法攻击

通过扰乱原始输入来定义创建对抗性示例的函数。fgsm_attack函数有三个输入,

是原始的勿扰乱 图像

是像素方式的扰动量

是 输入图像的损失梯度

。然后该功能将扰动图像创建为:

最后,为了保持数据的原始范围,将扰动的图像剪切到范围[0,1]。

# FGSM算法攻击代码

def fgsm_attack(image, epsilon, data_grad):

# 收集数据梯度的元素符号

sign_data_grad = data_grad.sign()

# 通过调整输入图像的每个像素来创建扰动图像

perturbed_image = image + epsilon*sign_data_grad

# 添加剪切以维持[0,1]范围

perturbed_image = torch.clamp(perturbed_image, 0, 1)

# 返回被扰动的图像

return perturbed_image

3.4 测试函数

本文核心结果来自测试功能。每次调用此测试函数都会对 MNIST 测试集执行完整的测试步骤,并报告最终的准确性。此函数也需要输入

。test函数展示受到强度为

的攻击下被攻击模型的准确性。对于测试集中的每个样本,该函数计算输入数据

的损失梯度,用fgsm_attack(perturbed_data) 创建扰乱图像,然后检查扰动的例子是否是对抗性的。除了测试模型的准确性之外,该函数还保存并返回一些成功的对抗性示例,以便稍后可视化。

def test( model, device, test_loader, epsilon ):

# 精度计数器

correct = 0

adv_examples = []

# 循环遍历测试集中的所有示例

for data, target in test_loader:

# 把数据和标签发送到设备

data, target = data.to(device), target.to(device)

# 设置张量的requires_grad属性,这对于攻击很关键

data.requires_grad = True

# 通过模型前向传递数据

output = model(data)

init_pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability

# 如果初始预测是错误的,不打断攻击,继续

if init_pred.item() != target.item():

continue

# 计算损失

loss = F.nll_loss(output, target)

# 将所有现有的渐变归零

model.zero_grad()

# 计算后向传递模型的梯度

loss.backward()

# 收集datagrad

data_grad = data.grad.data

# 唤醒FGSM进行攻击

perturbed_data = fgsm_attack(data, epsilon, data_grad)

# 重新分类受扰乱的图像

output = model(perturbed_data)

# 检查是否成功

final_pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability

if final_pred.item() == target.item():

correct += 1

# 保存0 epsilon示例的特例

if (epsilon == 0) and (len(adv_examples) < 5):

adv_ex = perturbed_data.squeeze().detach().cpu().numpy()

adv_examples.append( (init_pred.item(), final_pred.item(), adv_ex) )

else:

# 稍后保存一些用于可视化的示例

if len(adv_examples) < 5:

adv_ex = perturbed_data.squeeze().detach().cpu().numpy()

adv_examples.append( (init_pred.item(), final_pred.item(), adv_ex) )

# 计算这个epsilon的最终准确度

final_acc = correct/float(len(test_loader))

print("Epsilon: {}\tTest Accuracy = {} / {} = {}".format(epsilon, correct, len(test_loader), final_acc))

# 返回准确性和对抗性示例

return final_acc, adv_examples

3.5 运行攻击

实现的最后一部分是实际运行攻击。为 epsilons 输入中的每个 epsilon 值运行一个完整的测试步骤。 对于每个epsilon,保存最终的准确性,并在接下来的部分中绘制一些成功的对抗性示例。注意随着 epsilon 值的增加,打印精度会如何降低。另外,请注意ε= 0 的情况表示原始测试精度,没有攻击。

accuracies = []

examples = []

# 对每个epsilon运行测试

for eps in epsilons:

acc, ex = test(model, device, test_loader, eps)

accuracies.append(acc)

examples.append(ex)

  • 输出结果:

Epsilon: 0      Test Accuracy = 9810 / 10000 = 0.981

Epsilon: 0.05   Test Accuracy = 9426 / 10000 = 0.9426

Epsilon: 0.1    Test Accuracy = 8510 / 10000 = 0.851

Epsilon: 0.15   Test Accuracy = 6826 / 10000 = 0.6826

Epsilon: 0.2    Test Accuracy = 4301 / 10000 = 0.4301

Epsilon: 0.25   Test Accuracy = 2082 / 10000 = 0.2082

Epsilon: 0.3    Test Accuracy = 869 / 10000 = 0.0869

4.结果

4.1 准确度 vs Epsilon

第一个结果是精度与 epsilon 图。如前所述,随着 epsilon 的增加,期望测试精度降低。这是因为较大的 epsilons 意味着,朝着最大化损失的方向迈出更大的一步。注意,即使 epsilon 值线性分布,曲线中的趋势也不是线性的。例如,ε= 0.05 时的精度仅比 ε= 0 低 约 4%,但ε= 0.2 时的精度比 ε= 0.15 低 25%。另外,请注意在 ε= 0.25 和 ε= 0.3 之间模型的准确性达到10级分类器的随机精度。

plt.figure(figsize=(5,5))

plt.plot(epsilons, accuracies, "*-")

plt.yticks(np.arange(0, 1.1, step=0.1))

plt.xticks(np.arange(0, .35, step=0.05))

plt.title("Accuracy vs Epsilon")

plt.xlabel("Epsilon")

plt.ylabel("Accuracy")

plt.show()

4.2 样本对抗性示例

正如天底下没有免费午餐。在这种情况下,随着 epsilon 增加,测试精度降低,扰动也在变得更容易察觉。实际上,在攻击者必须考虑权衡,准确度降级和可感知性。展示了每个 epsilon 值的成功对抗性示例的一些例子。图的每一行显示不同的 epsilon 值。第一行是 ε= 0 的例子,代表没有扰动的原始“干净”图像。每个图像的标题显示“原始分类 - >对抗性分类。”注意,扰动在 ε= 0.15 时开始变得明显,并且在 ε= 0.3 时非常明显。然而,在所有情况下,尽管增加了噪音,人类仍然能够识别正确的类别。

# 在每个epsilon上绘制几个对抗样本的例子

cnt = 0

plt.figure(figsize=(8,10))

for i in range(len(epsilons)):

for j in range(len(examples[i])):

cnt += 1

plt.subplot(len(epsilons),len(examples[0]),cnt)

plt.xticks([], [])

plt.yticks([], [])

if j == 0:

plt.ylabel("Eps: {}".format(epsilons[i]), fontsize=14)

orig,adv,ex = examples[i][j]

plt.title("{} -> {}".format(orig, adv))

plt.imshow(ex, cmap="gray")

plt.tight_layout()

plt.show()

5.展望

本文能够深入了解对抗机器学习。在这里有很多潜在的方向。这次攻击代表了对抗性攻击研究的开始,因为后来有很多关于如何从对手攻击和防御 ML 模型的想法。事实上,在NIPS 2017上有一场对抗性攻击和防守比赛,文章:[Adversarial Attacks and Defences Competition] (https://arxiv.org/pdf/1804.00097.pdf)描述了竞赛中使用的许多方法。防御方面的工作,让萌发了使机器学习模型,在一般情况下更加健壮的想法,包括自然扰动和对抗性的输入。

另一个方向,不同领域的对抗性攻击和防御。对抗性研究不仅限于图像领域,对语音到文本模型的攻击。 但也许了解更多关于对抗性机器学习的最好方法就是动手实践。尝试从 NIPS 2017竞赛中实施不同的攻击,并了解与 FGSM 的区别。尝试从自己的攻击中保护模。

pytorch生成对抗示例的更多相关文章

  1. 深度学习框架PyTorch一书的学习-第七章-生成对抗网络(GAN)

    参考:https://github.com/chenyuntc/pytorch-book/tree/v1.0/chapter7-GAN生成动漫头像 GAN解决了非监督学习中的著名问题:给定一批样本,训 ...

  2. GAN实战笔记——第六章渐进式增长生成对抗网络(PGGAN)

    渐进式增长生成对抗网络(PGGAN) 使用 TensorFlow和 TensorFlow Hub( TFHUB)构建渐进式增长生成对抗网络( Progressive GAN, PGGAN或 PROGA ...

  3. 用MXNet实现mnist的生成对抗网络(GAN)

    用MXNet实现mnist的生成对抗网络(GAN) 生成式对抗网络(Generative Adversarial Network,简称GAN)由一个生成网络与一个判别网络组成.生成网络从潜在空间(la ...

  4. 不到 200 行代码,教你如何用 Keras 搭建生成对抗网络(GAN)【转】

    本文转载自:https://www.leiphone.com/news/201703/Y5vnDSV9uIJIQzQm.html 生成对抗网络(Generative Adversarial Netwo ...

  5. 知物由学 | AI网络安全实战:生成对抗网络

    本文由  网易云发布. “知物由学”是网易云易盾打造的一个品牌栏目,词语出自汉·王充<论衡·实知>.人,能力有高下之分,学习才知道事物的道理,而后才有智慧,不去求问就不会知道.“知物由学” ...

  6. 【超分辨率】—(ESRGAN)增强型超分辨率生成对抗网络-解读与实现

    一.文献解读 我们知道GAN 在图像修复时更容易得到符合视觉上效果更好的图像,今天要介绍的这篇文章——ESRGAN: Enhanced Super-Resolution Generative Adve ...

  7. 科普 | ​生成对抗网络(GAN)的发展史

    来源:https://en.wikipedia.org/wiki/Edmond_de_Belamy 五年前,Generative Adversarial Networks(GANs)在深度学习领域掀起 ...

  8. 生成对抗网络GAN介绍

    GAN原理 生成对抗网络GAN由生成器和判别器两部分组成: 判别器是常规的神经网络分类器,一半时间判别器接收来自训练数据中的真实图像,另一半时间收到来自生成器中的虚假图像.训练判别器使得对于真实图像, ...

  9. 基于Jittor框架实现LSGAN图像生成对抗网络

    基于Jittor框架实现LSGAN图像生成对抗网络 生成对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的 ...

随机推荐

  1. hdu4560 不错的建图,二分最大流

    题意: 我是歌手 Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Total Subm ...

  2. SSDT表概念详解

    SSDT 的全称是 System Services Descriptor Table,系统服务描述符表. 这个表就是一个把 Ring3 的 Win32 API 和 Ring0 的内核 API 联系起来 ...

  3. hdu3329 二分+搜索

    题意:       给你一个岛,然后岛的外侧开始涨水(内侧不涨只有外侧,也就是里面的0永远是0),问最少涨水多少才能把岛分成两个或者两个以上. 思路:       可以二分枚举水的高度(数据不大估计暴 ...

  4. C++ 三消游戏基本实现

    最近在研究三消算法,我想试试在完全不借助网络资源的情况下搞定这个东西,所以有些地方可能不是最优的. 代码留此备忘. 1. 3x_desk_event.h 1 #pragma once 2 3 #ifn ...

  5. Mybatis-Plus03 代码自动生成器

    先看完Mybatis-Plus01和Mybatis-Plus02再看Mybatis-Plus03 AutoGenerator 是 MyBatis-Plus 的代码生成器,通过 AutoGenerato ...

  6. InnoDB解决幻读的方案——LBCC&MVCC

    最近要在公司内做一次技术分享,思来想去不知道该分享些什么,最后在朋友的提示下,准备分享一下MySQL的InnoDB引擎下的事务幻读问题与解决方案--LBCC&MVCC.经过好几天的熬夜通宵,终 ...

  7. 改善c++程序的150个建议(读后总结)-------0-9

    0. 不要让main 函数返回 void 入口函数main()返回类型应该为 int, 即程序结束时return 0 表示程序正常返回,函数结束时 return -1 值表示程序异常返回, 如果不显式 ...

  8. 从 demo 到生产 - 手把手写出实战需求的 Flink 广播程序

    Flink 广播变量在实时处理程序中扮演着很重要的角色,适当的使用广播变量会大大提升程序处理效率. 本文从简单的 demo 场景出发,引入生产中实际的需求并提出思路与部分示例代码,应对一般需求应该没有 ...

  9. Cookie&Session-授课

    1 会话技术 1.1 会话管理概述 1.1.1 什么是会话 会话:浏览器和服务器之间的多次请求和响应 为了实现一些功能,浏览器和服务器之间可能会产生多次的请求和响应,从浏览器访问服务器开始,到访问服务 ...

  10. vscode 取消 eslint everywhere

    vscode装了eslint插件,一不小心点了eslint everywhere 然后任务栏就变成这样了 eslint前面是双钩 不管你打开什么项目,什么工作空间,永远都是默认开启ESlint!!! ...