传送门

考场上只会暴力 \(n^4\) DP,部分分还写炸了

但其实这个DP可以前缀和优化到 \(n^3\) ,我觉得没有这档部分分就没写

但其实是有这一档的,我没有看出来……

正解想不到

如果我们已知使选的所有数 \(i\) 都满足 \(i \mid gcd\) 的方案数,就可以容斥得到答案

所以先求有多少种选择方案使得选的所有数均为 \(i\) 的倍数的方案数

然后考虑这一步如何容斥

发现对于 \(i > \lfloor \frac{n}{2} \rfloor\) 上面求出来的结果就是答案,因为没有倍数可以让它算重

然后对于这个分界线左边的第一个数,我们可以减掉它的倍数的方案数(这些方案数一定是正确的)来得到它的正确方案数

于是这个分界线左移了一位

重复上述过程,就可以得到答案了

Code:

#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define N 100010
#define ll long long
#define reg register int
//#define int long long char buf[1<<21], *p1=buf, *p2=buf;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf, 1, 1<<21, stdin)), p1==p2?EOF:*p1++)
inline int read() {
int ans=0, f=1; char c=getchar();
while (!isdigit(c)) {if (c=='-') f=-f; c=getchar();}
while (isdigit(c)) {ans=(ans<<3)+(ans<<1)+(c^48); c=getchar();}
return ans*f;
} int n, m;
int a[25][N], maxn, sta[N<<2], top, vis2[25][N];
bool vis[N];
ll dp[25][N], ans;
const ll p=1e9+7;
int gcd(int a, int b) {return !b?a:gcd(b, a%b);} namespace task1{
void solve() {
for (reg i=1; i<=n; ++i)
for (reg j=1; j<=m; ++j)
sta[++top]=a[i][j];
sort(sta+1, sta+top+1);
top=unique(sta+1, sta+top+1)-sta-1;
for (reg i=1; i<=top; ++i) {
vis[sta[i]]=1;
for (reg j=1; j<=top; ++j)
vis[gcd(sta[i], sta[j])]=1;
}
for (reg i=n; i; --i) {
for (reg j=1; j<=maxn; ++j) if (vis[j]) {
dp[i][j]=j;
for (reg k=i+1; k<=n; ++k) {
for (reg h=1; h<=m; ++h) {
dp[i][j] = (dp[i][j]+dp[k][gcd(j, a[k][h])])%p;
}
}
}
}
for (reg i=1; i<=n; ++i)
for (reg j=1; j<=m; ++j)
ans = (ans+dp[i][a[i][j]])%p;
printf("%lld\n", ans);
exit(0);
}
} namespace task2{
void solve() {
ll ans=0;
for (int i=1; i<=m; ++i) ans=(ans+a[1][i])%p;
printf("%lld\n", ans);
exit(0);
}
} namespace task3{
ll fac[N], inv[N], mic[N], ans;
ll C(int n, int k) {if (n==k) return 1ll; return !k?1ll:fac[n]*inv[k]%p*inv[n-k]%p;}
void solve() {
fac[0]=fac[1]=1; inv[0]=inv[1]=1; mic[0]=1;
for (int i=2; i<=n; ++i) fac[i]=fac[i-1]*i%p;
for (int i=2; i<=n; ++i) inv[i]=(p-p/i)*inv[p%i]%p;
for (int i=2; i<=n; ++i) inv[i]=inv[i-1]*inv[i]%p;
for (int i=1; i<=n+1; ++i) mic[i]=mic[i-1]*m%p;
for (int i=1; i<=n; ++i)
for (int j=0; j<=n-i; ++j)
ans = (ans+C(n-i, j)*mic[j+1]%p)%p;
printf("%lld\n", ans*a[1][1]%p);
exit(0);
}
} namespace task{
ll cnt[25][N], met[N], ans;
void solve() {
for (int i=1; i<=n; ++i) {
cnt[i][1]=m;
for (int j=2; j<=maxn; ++j)
for (int k=1; k*j<=maxn; ++k)
cnt[i][j]+=vis2[i][k*j];
}
//cout<<"cnt: "; for (int i=1; i<=maxn; ++i) cout<<cnt[1][i]<<' '; cout<<endl;
for (int i=1; i<=maxn; ++i) {
met[i]=1;
for (int j=1; j<=n; ++j)
met[i]=met[i]*(cnt[j][i]+1)%p;
--met[i];
}
//cout<<"met: "; for (int i=1; i<=maxn; ++i) cout<<met[i]<<' '; cout<<endl;
for (int i=maxn; i; --i) {
for (int j=2; i*j<=maxn; ++j) met[i]-=met[i*j];
ans = (ans+met[i]*i)%p;
}
//cout<<"met: "; for (int i=1; i<=maxn; ++i) cout<<met[i]<<' '; cout<<endl;
printf("%lld\n", ((ans%p)+p)%p);
exit(0);
}
} signed main()
{
bool same=1; int lst=0;
n=read(); m=read();
for (reg i=1; i<=n; ++i)
for (reg j=1; j<=m; ++j) {
a[i][j]=read();
maxn=max(maxn, a[i][j]);
++vis2[i][a[i][j]];
if (!lst) lst=a[i][j];
else if (lst!=a[i][j]) same=0;
}
//if (n==1) task2::solve();
//else if (same) task3::solve();
//else task1::solve();
task::solve(); return 0;
}

题解 b的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

  10. JSOI2016R3 瞎BB题解

    题意请看absi大爷的blog http://absi2011.is-programmer.com/posts/200920.html http://absi2011.is-programmer.co ...

随机推荐

  1. Leetcode No.1 Two Sum(c++哈希表实现)

    1. 题目 1.1 英文题目 Given an array of integers nums and an integer target, return indices of the two numb ...

  2. Kotlin Coroutine(协程): 三、了解协程

    @ 目录 前言 一.协程上下文 1.调度器 2.给协程起名 3.局部变量 二.启动模式 CoroutineStart 三.异常处理 1.异常测试 2.CoroutineExceptionHandler ...

  3. 洛谷P5463 小鱼比可爱(加强版) 题解

    写博客不易,来玩会? 这道题我和dalao们的做法略有不同,我用的是归并排序做法qwq 归并排序求逆序对大家应该很清楚了,我这里就来讲讲如何用归并排序求出这道题的答案 让我们先观察一下规律 举个栗子, ...

  4. 「AGC021E」Ball Eat Chameleons

    「AGC021E」Ball Eat Chameleons 考虑如何判定一个合法的颜色序列. 不妨设颜色序列中有 \(R\) 个红球,\(B\) 个蓝球,所以有 \(R+B=k\). 考虑分情况讨论: ...

  5. iframe跨域访问出现的cookie问题,提供两种解决方案

    最近在java项目对接时出现的一个问题.A系统嵌入B系统页面时,使用iframe去嵌入B系统页面丢失sessionid,导致B系统认为是未进行登录的请求,从而跳转到了B系统登录页. 解决方法查看此博客 ...

  6. [刘阳Java]_大型电商网站架构技术演化历程

    今年的双十一已经过去一段,作为技术小咖啡,我们先说一下大型电商网站的特点:高并发,大流量,高可用,海量数据.下面就说说大型网站的架构演化过程,它的技术架构是如何一步步的演化的 1. 早期的网站架构 初 ...

  7. java网络编程基础——网络基础

    java网络编程 网络编程基础 1.常用的网络拓扑结构: 星型网络.总线网络.环线网络.树形网络.星型环线网络 2.通信协议的组成 通信协议通常由3部分组成: 语义部分:用于决定通信双方对话类型 语法 ...

  8. tomcat与springmvc 结合 之---第20篇 springmvc 对于加载的bean对象存储在哪里

  9. 构建前端第8篇之---Webstom搭建ES6运行环境

    张艳涛 写于2021-1-22 一.在有webstorm和node.js前提下,安装全局的babel npm install babel-cli babel-eslint -g 二.在terminal ...

  10. Unsupported major.minor version 52.0解决办法【转】

    1.首先解释一下报错原因: stanford parser和jdk版本对应关系 J2SE8=52, J2SE7=51, J2SE6.0=50, J2SE5.0=49, JDK1.4=48, JDK1. ...