NOIP 模拟 $14\; \text{影魔}$
题解 \(by\;\;zj\varphi\)
不是原题
一道(对我来说)很需要技巧的题
对于颜色数如何处理
离线,将子树转化为 \(dfs\) 序,但这种做法无法处理深度
我们按照深度加点(可以通过 \(bfs\) 实现),对于加到的每一个点,寻找和它颜色相同的点的 \(dfs\) 序,记录前趋和后继( \(set\) ),
将这个点和前趋,和后继的 \(lca\) 权值减 \(1\),将前趋和后继的 \(lca\) 权值加 \(1\)。
至于如何处理深度,可以维护一棵可持久化线段树,对于每一层在 \(dfs\) 序上建立,查询时直接区间查询相应深度的那棵线段树。
Code
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=0;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
}
using IO::read;
namespace nanfeng{
#define pb(x) push_back(x)
#define cmax(x,y) ((x)>(y)?(x):(y))
#define cmin(x,y) ((x)>(y)?(y):(x))
#define FI FILE *IN
#define FO FILE *OUT
static const int N=1e5+7;
set<int> ste[N];
set<int>::iterator it,ti;
int first[N],col[N],l[N],r[N],bc[N],que[N],head[N],st[N<<1][19],dep[N],mxdep[N],lg[N<<1],ol,dfn,t=1,n,m;
struct edge{int v,nxt;}e[N];
inline void add(int u,int v) {e[t].v=v,e[t].nxt=first[u],first[u]=t++;}
struct Seg{
#define ls(x) T[x].l
#define rs(x) T[x].r
#define up(x) T[x].w=T[ls(x)].w+T[rs(x)].w
struct segmenttree{int l,r,w;}T[N<<6];
int rt[N],tot;
inline int New(int pre) {T[p(tot)]=T[pre];return tot;}
void update(int &x,int p,int k,int l,int r) {
if (!x) x=p(tot);
if (l==r) {T[x].w+=k;return;}
int mid(l+r>>1);
if (p<=mid) update(ls(x),p,k,l,mid);
else update(rs(x),p,k,mid+1,r);
up(x);
}
int merge(int x,int y) {
if (!x||!y) return (x|y);
T[x].w+=T[y].w;
ls(x)=merge(ls(x),ls(y));
rs(x)=merge(rs(x),rs(y));
return x;
}
int query(int x,int l,int r,int lt,int rt) {
if (!x) return 0;
if (l<=lt&&rt<=r) return T[x].w;
int mid(lt+rt>>1),res(0);
if (l<=mid) res+=query(ls(x),l,r,lt,mid);
if (r>mid) res+=query(rs(x),l,r,mid+1,rt);
return res;
}
}T;
void dfs(int x) {
bc[l[x]=p(dfn)]=x;
head[st[p(ol)][0]=x]=ol;
mxdep[x]=dep[x];
for (ri i(first[x]),v;i;i=e[i].nxt)
dep[v=e[i].v]=dep[st[p(ol)][0]=x]+1,dfs(v),mxdep[x]=cmax(mxdep[x],mxdep[v]);
r[x]=dfn;
}
inline void init_rmq() {
dep[1]=1;dfs(1);
for (ri i(2);i<=ol;p(i)) lg[i]=lg[i>>1]+1;
int k=lg[ol];
for (ri j(1);j<=k;p(j)) {
ri len=(1<<j);
for (ri i(1);i+len-1<=ol;p(i)) {
int x1=st[i][j-1],x2=st[i+(1<<j-1)][j-1];
st[i][j]=dep[x1]<dep[x2]?x1:x2;
}
}
}
inline int Getlca(int u,int v) {
if (head[u]>head[v]) swap(u,v);
int k=lg[head[v]-head[u]+1];
int x1=st[head[u]][k],x2=st[head[v]-(1<<k)+1][k];
return dep[x1]<dep[x2]?x1:x2;
}
inline void bfs() {
ri hd=1,tl=0,mxd;
que[p(tl)]=1;
while(hd<=tl) {
ri x=que[hd++],cl=col[x],pre=0,nxt=0;
T.update(T.rt[dep[x]],l[x],1,1,n);
ste[cl].insert(l[x]);
it=ti=ste[cl].find(l[x]);
if (ti!=ste[cl].begin()) {
pre=bc[*--ti];
T.update(T.rt[dep[x]],l[Getlca(pre,x)],-1,1,n);
}
if (it!=--ste[cl].end()) {
nxt=bc[*p(it)];
T.update(T.rt[dep[x]],l[Getlca(x,nxt)],-1,1,n);
}
if (pre&&nxt) T.update(T.rt[dep[x]],l[Getlca(pre,nxt)],1,1,n);
for (ri i(first[x]);i;i=e[i].nxt) que[p(tl)]=e[i].v;
}
mxd=dep[que[tl]];
for (ri i(2);i<=mxd;p(i)) T.merge(T.rt[i],T.rt[i-1]);
}
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
read(n),read(m);
for (ri i(1);i<=n;p(i)) read(col[i]);
for (ri i(2),u;i<=n;p(i)) read(u),add(u,i);
init_rmq();
bfs();
for (ri i(1),x,d;i<=m;p(i)) {
read(x),read(d);
if (dep[x]+d>mxdep[x])
printf("%d\n",T.query(T.rt[mxdep[x]],l[x],r[x],1,n));
else printf("%d\n",T.query(T.rt[dep[x]+d],l[x],r[x],1,n));
}
return 0;
}
}
int main() {return nanfeng::main();}
NOIP 模拟 $14\; \text{影魔}$的更多相关文章
- NOIP 模拟 $14\; \text{抛硬币}$
题解 \(by\;\;zj\varphi\) 签到题,自己看题解 Code #include<bits/stdc++.h> #define ri register signed #defi ...
- NOIP 模拟 $14\; \text{队长快跑}$
题解 \(by\;zj\varphi\) 一道很妙的 \(dp\) 题,方程状态不好设置,细节也不少 看到数据范围,直接想离散化 设 \(f_{i,j}\) 表示处理完前 \(i\) 个水晶,其中摧毁 ...
- NOIP模拟 1
NOIP模拟1,到现在时间已经比较长了.. 那天是6.14,今天7.18了 //然鹅我看着最前边缺失的模拟1,还是终于忍不住把它补上,为了保持顺序2345重新发布了一遍.. # 用 户 名 ...
- 20190902+0903合集-NOIP模拟
一直没时间写QwQ 于是补一下. Day 1 晚饭吃的有点恶心…… $1s\,2s\,5s$ 还开 -O2 ?? 有点恐怖. T1 猛的一想: 把外面设成一个点, 向入口连一条权为排队时间的边 从出口 ...
- 2021.5.22 noip模拟1
这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...
- NOIP模拟
1.要选一个{1,2,...n}的子集使得假如a和b在所选集合里且(a+b)/2∈{1,2,...n}那么(a+b)/2也在所选集合里 f[i]=2*f[i-1]-f[i-2]+g[i] g[n]:选 ...
- NOIP模拟3
期望得分:30+90+100=220 实际得分:30+0+10=40 T1智障错误:n*m是n行m列,硬是做成了m行n列 T2智障错误:读入三个数写了两个%d T3智障错误:数值相同不代表是同一个数 ...
- 7.22 NOIP模拟7
又是炸掉的一次考试 T1.方程的解 本次考试最容易骗分的一道题,但是由于T2花的时间太多,我竟然连a+b=c都没判..暴力掉了40分. 首先a+b=c,只有一组解. 然后是a=1,b=1,答案是c-1 ...
- NOIP模拟 14
垃圾成绩,一点都不稳定. 如果把数组开小的分得到的话..总分还挺不错.. 那又能怪谁,都快NOIP了还犯这种傻逼错误 nc哥是要阿卡的节奏..真是太强了 某kyh也不知道偷了谁的rp,分高的一批 wd ...
随机推荐
- OpenResty简介
OpenResty(也称为 ngx_openresty)是一个全功能的 Web 应用服务器.它打包了标准的 Nginx 核心,很多的常用的第三方模块,以及它们的大多数依赖项. 通过揉和众多设计良好的 ...
- Linux服务器相关性能的命令
Linux服务器相关性能的命令 一.查看服务器性能信息的相关命令 1.cpu信息查看 cpu分为物理cpu和逻辑cpu 物理cpu:实际物理服务器插槽上cpu的个数,可以通过physical id不重 ...
- EasyUI学后总结第一集
1,创建Easyui组件-使用html还是使用js方式? 如果在创建Easyui组件的时候,组件再被更改,那么属于静态组件,对于静态组件不要使用js方式创建--会增加js代码量. 如果创建的Easyu ...
- python基础之面向对象OOP
#类(面向对象) PageObject设计模式 unittest 知识体系#函数式编程import datetimebook_info = { "title":"Pyth ...
- 第一篇 -- Sprint Tool Suite配置和Hello World编写
首先需要安装 1. Sprint Tool Suite(本次所用版本:spring-tool-suite-3.8.3.RELEASE-e4.6.2-win32-x86_64) 2. Tomcat(本次 ...
- 17Java进阶——反射、进程、Java11新特性
1.Java反射机制 Java反射(Reflection)概念:在运行时动态获取类的信息以及动态调用对象方法的功能. 1.1反射的应用--通过全类名获取类对象及其方法 package two.refl ...
- Python 爬取页面内容
import urllib.request import requests from bs4 import BeautifulSoup url = "http://www.stats.gov ...
- DC-8靶机
仅供个人娱乐 靶机信息 下载地址:http://www.five86.com/downloads/DC-8.zip 一.主机扫描 二.信息收集 http://192.168.17.135/robots ...
- netty系列之:netty架构概述
目录 简介 netty架构图 丰富的Buffer数据机构 零拷贝 统一的API 事件驱动 其他优秀的特性 总结 简介 Netty为什么这么优秀,它在JDK本身的NIO基础上又做了什么改进呢?它的架构和 ...
- DataGrid列显示隐藏配置
1.列右键事件 private void data1_MouseRightButtonDown(object sender, MouseButtonEventArgs e) { ContextMenu ...