引言

在本篇文章中,我们主要剖析c++中的动态内存管理,包括malloc、new expression、operator new、array new和allocator内存分配方法以及对应的内存释放方式和他们之间的调用关系,另外也包括一些会引发的陷阱如内存泄漏。


动态内存管理函数及其调用关系

c++中的动态内存分配和释放方式有很多,主要包括:

  • malloc与free
  • new expression与delete expression
  • array new 与array delete
  • operator new和operator delete
  • allocator中的allocate与deallocate

除此之外还有placement new,但需要注意placement new不是用来内存分配和释放的,而是在已分配的内存上构造对象。

他们之间的调用关系如下:

下面我们来具体看下每一种分配和释放方式的使用和原理。

malloc与free

	void *p1 = malloc(32); //分配32字节的内存
free(p1);//释放指针p1指向的内存

malloc函数以字节数为参数,返回指向分配的内存的首地址的void指针;而free函数释放给定指针指向的内存。

operator new与operator delete

	void *p6 = ::operator new(32); //分配32字节
::operator delete(p6);

PS:底层调用mallocfree。gnu的实现:

_GLIBCXX_WEAK_DEFINITION void *
operator new (std::size_t sz) _GLIBCXX_THROW (std::bad_alloc)
{
void *p; /* malloc (0) is unpredictable; avoid it. */
if (__builtin_expect (sz == 0, false))
sz = 1; while ((p = malloc (sz)) == 0)
{
new_handler handler = std::get_new_handler ();
if (! handler)
_GLIBCXX_THROW_OR_ABORT(bad_alloc());
handler ();
} return p;
}

_GLIBCXX_WEAK_DEFINITION void
operator delete(void* ptr) noexcept
{
std::free(ptr);
}

new expression与delete expression

首先来看下简单的使用:

	int *p2 = new int;
delete p2; string *p3 = new string("hello");
delete p3;

new expression完成两样工作:

  1. 申请并分配内存。

  2. 调用构造函数。

string *p3 = new string("hello");被编译器替换成下面的工作:

	string *p3;
try{
void * tmp_p = operator new(sizeof(string));
p3 = static_cast<string *>(tmp_p);
//string 通过宏被替换为basic_string,string的实际实现是basic_string,这里不是重点。
p3 -> basic_string::basic_string("hello"); //编译器可以这么调用,但我们自己写代码时不能。即我们不能以这种方式通过指针显式调用构造函数。
}catch (std::bad_alloc){
//若分配失败,构造函数不执行
}

我们看到,原来new expression内存申请和分配是通过调用operator new()来完成的

delete expression也完成两样工作:

  1. 调用析构函数。
  2. 释放内存。

delete p3;被编译器替换成下面的工作:

	p3 -> ~string();//通过指针直接调用析构函数。我们自己写代码时也可以这么做。
operator delete(p3);//释放内存

array new 与array delete

	//Complex为自定义类,只需要知道Complex类中没有指针成员。
Complex *pca = new Complex[3];//3次构造函数
delete[] pca;//3次析构函数 string *psa = new string[3];//3次构造函数
delete[] psa;//3次析构函数

array new调用一次内存分配函数(底层源码实现中,其实是调用operator new,只是调用的时候计算好了大小。因此,有上下两个cookie。)和多次构造函数。正因为调用多次构造函数,因此只能调用无参构造函数。

Complex和string的很大不同之处在于,string有指针成员,布局如下图:

array delete调用多次析构函数,一次内存释放函数(底层源码实现中其实是调用一次operator delete)。

我们来看下,如果本应该使用array delete的地方使用了delete expression会发生什么:

	Complex *pca = new Complex[3];//3次构造函数
delete pca;//1次析构函数 string *psa = new string[3];//3次析构函数
delete psa;//1次析构函数

对于Complex,我们使用了array new调用了3次构造函数,却没有使用array delete而使用了delete expression,因此只调用了一次析构函数。那么,会发生内存泄漏吗不会。因为Complex的析构函数是无关痛痒的(trivial),因为没有要释放的关联的内存(Complex对象自身所占内存之外没有隐式占用的内存)。

同样,对于string,我们使用了array new调用了3次构造函数,却没有使用array delete而使用了delete expression,因此只调用了一次析构函数。那么,会发生内存泄漏吗。因为string的析构函数不是无关痛痒的(non-trivial),因为要释放关联的内存(我们知道string底层是通过char[]存储的,析构时会释放掉那些实际存储字符的内存)。

PS: 具体的内存布局例子(涉及到cookie、对齐填充padding等等)。

	int *p = new int[10];
delete[]p;
//delete p 亦可。int无关痛痒。

VC6中的内存布局如下:

另:

	Demo *p = new Demo[3];//Demo为析构函数non-trivial的自定义class
delete[] p;
//delete p; //错误

VC6中的内存布局(注意红框内的3):

allocate与deallocate

#ifdef __GNUC__	//GNUC环境下
void *p7 = allocator<int>().allocate(4); //非static函数,通过实例化匿名对象调用allocate,分配4个int的内存。
allocator<int>().deallocate((int *)p7, 4); void *p8 = __gnu_cxx::__pool_alloc<int>().allocate(4);
__gnu_cxx::__pool_alloc<int>().deallocate((int *)p8, 4);
#endif

allocator为模板,实例化时需提供模板类型参数,上面的程序中模板类型参数为<int>,allocate的参数为4则allocate函数分配时就分配4int的内存。释放内存时需要给出指向所要释放的内存位置的指针,以及要释放的内存大小,单位为模板类型参数类型的大小。

__pool_alloc也为模板,除底层调用malloc的时机不同外(__pool_alloc使用内存池降低cookie带来的overhead),使用和上面的allocator相同。

placement new

用法:

	char *buf = new char[sizeof(Complex) * 3];
Complex *pc = new(buf) Complex(1, 2);
new(buf + 1) Complex(1, 3);
new(buf + 2) Complex(1, 3);
delete[] buf;

Complex *pc = new(buf) Complex(1, 2);被编译器替换成如下的工作:

	Complex *pc;
try{
void *tmp = operator new(sizeof(Complex), buf);//该重载版本并不分配内存。buf指针已经指向内存。
pc = static_cast<Complex*>(tmp);
pc->Complex::Complex(1, 2);//构造函数
}catch(std::bad_alloc){
//若分配失败则不执行构造函数。实际上没有分配,因为之前已经分配完。
}

上面使用的GNU库重载版本的operator new()函数如下:

// Default placement versions of operator new.
_GLIBCXX_NODISCARD inline void* operator new(std::size_t, void* __p) _GLIBCXX_USE_NOEXCEPT
{ return __p; }

可以看到确实没有分配内存。

重载内存管理函数

new expressiondelete expression都不可重载。

operator newoperator delete可以重载:

  • 重载globaloperator newoperator delete,即::operator new(size_t)::operator delete(void *)。(一般不会重载全局的该函数,因为影响太广)
  • 重载某个class的operator newoperator delete

若某个类重载了operator newoperator delete,则用new expression实例化该类时,调用的是类的operator newoperator delete,否则,调用globaloperator newoperator delete

array newarray delete也可以重载。同样分全局的和类所属的。

具体如何重载这些内存管理函数,以及如何使用重载的内存管理函数,将在下一篇文章中分析。

参考资料

[1] 《STL源码剖析》

[2] 《Effective C++》3/e

[3] 《C++ Primer》5/e

[4] 侯捷老师的课程

[5] gcc开源库:https://github.com/gcc-mirror/gcc

C++动态内存管理与源码剖析的更多相关文章

  1. 内存管理初始化源码4:add_active_range

    我们在阅读源码时,函数功能可以分为两类:1. bootmem.c 2. page_alloc.c. 1. bootmem.c是关于bootmem allocator的,上篇文章已经简述过. 2. pa ...

  2. 内存管理初始化源码1:setup_arch

    源码声明:基于Linux kernel 3.08 1. 在kernel/arch/mips/kernel/head.S中会做一些特定硬件相关的初始化,然后会调用内核启动函数:start_kernel: ...

  3. 内存管理初始化源码3:bootmem

    start_kernel ——> setup_arch ——> arch_mem_init ——> bootmem_init ——> init_bootmem_node: 此时 ...

  4. 内存管理初始化源码2:setup_arch

    PFN相关宏说明: /* kernel/include/linux/pfn.h */ PFN : Page Frame Number(物理页帧) /* * PFN_ALIGN:返回地址x所在那一页帧的 ...

  5. 内存管理初始化源码5:free_area_init_nodes

    start_kernel ——> setup_arch ——> arch_mem_init ——> |——> bootmem_init  |——> device_tree ...

  6. Spring源码剖析依赖注入实现

    Spring源码剖析——依赖注入实现原理 2016年08月06日 09:35:00 阅读数:31760 标签: spring源码bean依赖注入 更多 个人分类: Java   版权声明:本文为博主原 ...

  7. (原创滴~)STL源码剖析读书总结1——GP和内存管理

    读完侯捷先生的<STL源码剖析>,感觉真如他本人所说的"庖丁解牛,恢恢乎游刃有余",STL底层的实现一览无余,给人一种自己的C++水平又提升了一个level的幻觉,呵呵 ...

  8. linux0.11内核源码剖析:第一篇 内存管理、memory.c【转】

    转自:http://www.cnblogs.com/v-July-v/archive/2011/01/06/1983695.html linux0.11内核源码剖析第一篇:memory.c July  ...

  9. 菜鸟nginx源码剖析数据结构篇(九) 内存池ngx_pool_t[转]

    菜鸟nginx源码剖析数据结构篇(九) 内存池ngx_pool_t Author:Echo Chen(陈斌) Email:chenb19870707@gmail.com Blog:Blog.csdn. ...

随机推荐

  1. SpringCloud-OAuth2(四):改造篇

    本片主要讲SpringCloud Oauth2篇的实战改造,如动态权限.集成JWT.更改默认url.数据库加载client信息等改造. 同时,这应该也是我这系列博客的完结篇. 关于Oauth2,我也想 ...

  2. JUL 日志框架

    1.JUL 简介 JUL 全称 Java Util Logging,位于java.util.logging.Logger 包.它是 java 原生的日志框架,使用时无需另外引用第三方的类库,相对其他的 ...

  3. Linux中系统时间同步ntpdate简介

    Linux服务器运行久时,系统时间就会存在一定的误差,一般情况下可以使用date命令进行时间设置,但在做数据库集群分片等操作时对多台机器的时间差是有要求的,此时就需要使用ntpdate进行时间同步.所 ...

  4. 6、基本数据类型(list)

    6.1.列表: 1.li = [1, 12, 9, "age", ["孙子涵", ["19", 10], "张涵予"], ...

  5. POJ 1696 Space Ant 点积计算夹角

    题意: 一只特别的蚂蚁,只能直走或者左转.在一个平面上,有很多株植物,这只蚂蚁每天需要进食一株,这只蚂蚁从起点为(0,miny)的点开始出发.求最多能活多少天 分析: 肯定是可以吃到所有植物的,以当前 ...

  6. 面试题二:JVM

    JVM垃圾回收的时候如何确定垃圾? 有2种方式: 引用计数 每个对象都有一个引用计数属性,新增一个引用时计数加1,引用释放时计数减1,计数为0时可以回收: 缺点:无法解决对象循环引用的问题: 可达性分 ...

  7. MyBatis:条件构造器QueryWrapper方法详解

    QueryWrapper 说明:      继承自 AbstractWrapper ,自身的内部属性 entity 也用于生成 where 条件及 LambdaQueryWrapper, 可以通过 n ...

  8. Java:Java的堆区、栈区和方法区详解

    Java内存空间理解 堆:堆主要存放Java在运行过程中new出来的对象,凡是通过new生成的对象都存放在堆中,对于堆中的对象生命周期的管理由Java虚拟机的垃圾回收机制GC进行回收和统一管理.类的非 ...

  9. log4j配置相对路径实现日志记录

    从网上简单搜索了一下,发现有三种介绍的方法.总结在这里1. 解决的办法自然是想办法用相对路径代替绝对路径,其实log4j的FileAppender本身就有这样的机制,如: log4j.appender ...

  10. Bootstrap-table 显示行号

    趁热打铁,使用bootstrap-table时,想要显示每行的行号,再网上查了查,网上给的显示行号的大部分方法,只要一翻页,行号就会又从1开始计算, 也许没有碰到想要的,自己试着解决了这个问题,本人初 ...