EDG夺冠!用Python分析22.3万条数据:粉丝都疯了!
一、EDG夺冠信息
11月6日,在英雄联盟总决赛中,EDG战队以3:2战胜韩国队,获得2021年英雄联盟全球总决赛冠军,这个比赛在全网各大平台也是备受瞩目:
1、微博热搜第一名,截止2021-11-10已有亿级观看量,微博粉丝数到达638.4万
2、哔哩哔哩已有几亿人气,总弹幕有22.3万,全站排行榜最高第2名,B站粉丝已有219.9万
3、腾讯、爱奇艺、优酷等视频平台800万人看过
4、虎牙等直播平台热度也是居高不下
5、央视新闻也发微博庆祝EDG夺冠
既然比赛热度这么高,那么本次我们就以bilibili为基准,通过采集EDG夺冠比赛视频在哔哩哔哩的22.3万条弹幕数据,再通过Python来分析进而感受粉丝的热情
二、实战目标
1、利用爬虫技术抓取EDG战队在B站夺冠比赛视频的22.3万条弹幕数据
2、通过jieba、numpy等Python库对抓取来的弹幕数据进行分析并且可视化
三、bilibili接口分析
首先进入EDG夺冠比赛视频URL:
https://www.bilibili.com/video/BV1EP4y1j7kV?p=1
哔哩哔哩已为大家整理好了EDG比赛视频,从开幕式到夺冠时刻,共有7个视频
哔哩哔哩弹幕数据接口:
http://api.bilibili.com/x/v1/dm/list.so?oid=XXX
这个接口就是B站弹幕数据专用接口,我们可以直接拿来用,这个接口中的oid可以理解为每个视频中的唯一标识符,它由数字组成,每一个视频都有唯一的一个oid,那么我们只要找到oid就可以请求相应比赛视频弹幕的API接口,从而抓取弹幕数据
获取oid
打开开发者工具,切换到Network选项,然后找到以pagelist为开头的请求接口
接着找到Request URL这个请求接口,打开新窗口直接用这个API接口请求,如下图:
当我们直接请求这个API接口时可以看到JSON格式的数据,而在里面的cid就是我们需要的oid,如下所示:
1 {"code":0,"message":"0","ttl":1,"data":[{"cid":437586584,"page":1,"from":"vupload","part":"第一局 4K","duration":2952,"vid":"","weblink":"","dimension":{"width":1920,"height":1080,"rotate":0}},{"cid":437626309,"page":2,"from":"vupload","part":"第二局 4K","duration":3031,"vid":"","weblink":"","dimension":{"width":1920,"height":1080,"rotate":0}},{"cid":437659159,"page":3,"from":"vupload","part":"第三局 4K","duration":3406,"vid":"","weblink":"","dimension":{"width":1920,"height":1080,"rotate":0}},{"cid":437727348,"page":4,"from":"vupload","part":"第四局 4K","duration":3212,"vid":"","weblink":"","dimension":{"width":1920,"height":1080,"rotate":0}},{"cid":437729555,"page":5,"from":"vupload","part":"第五局 4K","duration":3478,"vid":"","weblink":"","dimension":{"width":1920,"height":1080,"rotate":0}},{"cid":437550300,"page":6,"from":"vupload","part":"开幕式","duration":984,"vid":"","weblink":"","dimension":{"width":1920,"height":1080,"rotate":0}},{"cid":437717574,"page":7,"from":"vupload","part":"夺冠时刻","duration":2017,"vid":"","weblink":"","dimension":{"width":1920,"height":1080,"rotate":0}}]
当然我们也可以点击Preview选项,点击data,打开数据,而里面的JSON数据是折叠的,包括cid在内,如下图所示:
可以看到,每个cid对应每一个比赛视频。我们也可以点击Response选项,里面的数据是真实的数据,意味着数据没有经过折叠,与直接请求Request URL返回的JSON数据是一样的
四、编码
定义一个获取cid的方法
1 import requests
2 import json
3
4
5 def get_cid():
6 url = 'https://api.bilibili.com/x/player/pagelist?bvid=BV1EP4y1j7kV&jsonp=jsonp'
7 try:
8 response = requests.get(url,timeout=None)
9 if response is not None:
10 return response.text
11 else:
12 return Nnone
13 except Exception as e:
14 print(e.args)
15
16
17 if __name__ == '__main__':
18 data = get_cid()
19 json_data = json.loads(data)
20 for cid_datas in json_data['data']:
21 cid = cid_datas.get('cid')
22 print(cid)
控制台输出如下:
拼接URL弹幕数据API接口
1 if __name__ == '__main__':
2 data = get_cid()
3 json_data = json.loads(data)
4 base_api = 'http://api.bilibili.com/x/v1/dm/list.so?oid='
5 for cid_datas in json_data['data']:
6 cid = cid_datas.get('cid')
7 detail_api = base_api + str(cid)
8 print(detail_api)
控制台输出如下:
一共有7个网址,对应7个EDG比赛视频的弹幕数据,我们点开第一个网址查看
抓取弹幕数据
从上一张图可以看到,每一条弹幕数据都在每一个<d>标签中,面对这种格式我们思考一下用哪种解析工具比较合适?答案当然是正则表达式,接下来我们要获取7个比赛视频的22.3万条数据,代码如下:
1 base_api = 'http://api.bilibili.com/x/v1/dm/list.so?oid='
2 all_api = []
3 for cid_datas in json_data['data']:
4 cid = cid_datas.get('cid')
5 detail_api = base_api + str(cid)
6 all_api.append(detail_api)
7 for api in all_api:
8 edg_datas = get_api_data(detail_api)
9 edg_datas = re.findall('<d.*?>(.*?)</d>',edg_datas,re.S)
10 with open('EDG.txt','a',encoding='utf-8') as f:
11 for edg_data in edg_datas:
12 print(edg_data)
13 f.write(edg_data + '\n')
避免乱码,加上如下代码:
1 response.encoding = chardet.detect(response.content)['encoding']
控制台输出如下:
由于弹幕数据共有22.3万条,这里仅展示EDG.txt部分弹幕数据,如下图所示:
词云图制作
我们已经抓取到弹幕数据,接下来利用EDG背景图做一个词云图
代码如下:
1 import jieba
2 from wordcloud import WordCloud
3 import matplotlib.pyplot as plt
4 from PIL import Image
5 import numpy as np
6
7 def do_wordcloud():
8 text = open('EDG.txt','r',encoding='utf-8').read()
9 text = text.replace('\n','').replace('\u3000','')
10 text_cut = jieba.lcut(text)
11 text_cut = ' '.join(text_cut)
12
13 #过滤一些没有关系的词
14 stop_words = ['“',',',' ','我','的','是','了',':','?','!','啊','你','吗','。','我们']
15
16 background = Image.open("EDG.jpg")
17 graph = np.array(background)
18
19 word_cloud = WordCloud(font_path='simsun.ttc',
20 background_color='white',
21 mask=graph, # 指定词云的形状
22 stopwords=stop_words)
23
24 word_cloud.generate(text_cut)
25 plt.subplots(figsize=(12,8))
26 plt.imshow(word_cloud)
27 plt.axis('off')
28 plt.show()
29 word_cloud.to_file('edg.png')
控制台输出如下:
把迪迦奥特曼背景图片也制作一波吧,哈哈哈!
制作成迪迦奥特曼词云图形状,如下所示:
当然你也可以使用pyecharts/echarts制作也行,还可以制作成你喜欢的图片形状。如果你接触过情感分析的话,也可以用这些弹幕数据分析一波
五、总结
PIL库
jieba库
numpy库
requests库
wordcloud库
matplotlib库
json,re,chardet库
六、完整项目及源码下载
完整项目(包括源码)获取方式:下载
原创不易,如果觉得有趣好玩,希望可以随手点个赞,拜谢各位老铁!
更多独家精彩内容 请扫码关注个人公众号,我们一起成长,一起Coding,让编程更有趣!
—— —— —— —— — END —— —— —— —— ————
欢迎扫码关注我的公众号
小鸿星空科技
EDG夺冠!用Python分析22.3万条数据:粉丝都疯了!的更多相关文章
- [Python] 通过采集两万条数据,对《无名之辈》影评分析
一.说明 本文主要讲述采集猫眼电影用户评论进行分析,相关爬虫采集程序可以爬取多个电影评论. 运行环境:Win10/Python3.5. 分析工具:jieba.wordcloud.pyecharts.m ...
- [Python] 通过采集23万条数据,对《哪吒》影评分析
一.说明 数据来源:猫眼: 运行环境:Win10/Python3.7 和 Win7/Python3.5: 分析工具:jieba.WorldCloud.pyecharts和matplotlib: 程序基 ...
- (转)Python网络爬虫实战:世纪佳缘爬取近6万条数据
又是一年双十一了,不知道从什么时候开始,双十一从“光棍节”变成了“双十一购物狂欢节”,最后一个属于单身狗的节日也成功被攻陷,成为了情侣们送礼物秀恩爱的节日. 翻着安静到死寂的聊天列表,我忽然惊醒,不行 ...
- Mvc+Dapper+存储过程分页10万条数据
10万条数据采用存储过程分页实现(Mvc+Dapper+存储过程) 有时候大数据量进行查询操作的时候,查询速度很大强度上可以影响用户体验,因此自己简单写了一个demo,简单总结记录一下: 技术:Mvc ...
- 复杂业务下向Mysql导入30万条数据代码优化的踩坑记录
从毕业到现在第一次接触到超过30万条数据导入MySQL的场景(有点low),就是在顺丰公司接入我司EMM产品时需要将AD中的员工数据导入MySQL中,因此楼主负责的模块connector就派上了用场. ...
- 插入1000万条数据到mysql数据库表
转自:https://www.cnblogs.com/fanwencong/p/5765136.html 我用到的数据库为,mysql数据库5.7版本的 1.首先自己准备好数据库表 其实我在插入100 ...
- 绝对干货,教你4分钟插入1000万条数据到mysql数据库表,快快进来
我用到的数据库为,mysql数据库5.7版本的 1.首先自己准备好数据库表 其实我在插入1000万条数据的时候遇到了一些问题,现在先来解决他们,一开始我插入100万条数据时候报错,控制台的信息如下: ...
- 1000万条数据导入mysql
今天需要将一个含有1000万条数据的文本内容插入到数据库表中,最初自然想到的是使用Insertinto '表名'values(),(),()...这种插入方式,但是发现这种方式对1000万条数据量的情 ...
- QTreeView处理大量数据(使用1000万条数据,每次都只是部分刷新)
如何使QTreeView快速显示1000万条数据,并且内存占用量少呢?这个问题困扰我很久,在网上找了好多相关资料,都没有找到合理的解决方案,今天在这里把我的解决方案提供给朋友们,供大家相互学习. 我开 ...
随机推荐
- 利用Qt中的ui文件生成PyQt5程序,自定义槽函数
1.在Qt Creator4.8.0上面设计如上.ui文件 2.点击上方图标,可以建立信号-槽连接,button_click()为自定义槽函数 3.设计目的:点击clear按钮,可消除上方文本框中的内 ...
- YbtOJ#943-平方约数【莫比乌斯反演,平衡规划】
正题 题目链接:http://www.ybtoj.com.cn/contest/122/problem/3 题目大意 \(S(i)\)表示\(i\)的约数个数,\(Q\)次询问给出\(n,m\)求 \ ...
- Semi-supervised semantic segmentation needs strong, varied perturbations
论文阅读: Semi-supervised semantic segmentation needs strong, varied perturbations 作者声明 版权声明:本文为博主原创文章,遵 ...
- MySQL where子句的使用
MySQL WHERE 子句 我们知道从 MySQL 表中使用 SQL SELECT 语句来读取数据. 如需有条件地从表中选取数据,可将 WHERE 子句添加到 SELECT 语句中. 语法 以下是 ...
- ECMA 2022 (es13) 新特性
本文主要整理了截至到 2021年10月12日 为止的且处于 Stage 3->Stage 4 阶段的ECMA提案. 主要包括: Class Fields RegExp Match Indices ...
- PaddlePaddle:在 Serverless 架构上十几行代码实现 OCR 能力
飞桨 (PaddlePaddle) 以百度多年的深度学习技术研究和业务应用为基础,是中国首个自主研发.功能完备. 开源开放的产业级深度学习平台,集深度学习核心训练和推理框架.基础模型库.端到端开发 ...
- 如何通过 Serverless 轻松识别验证码?
作者 | 江昱 来源 | Serverless 公众号 前言 Serverless 概念自被提出就倍受关注,尤其是近些年来 Serverless 焕发出了前所未有的活力,各领域的工程师都在试图将 Se ...
- Java基础之(十一):方法
Java方法详解 何谓方法(了解) System.out.println() // 类 对象 方法 方法是语句的集合,它们在一起执行一个功能. 方法是解决一类问题的步骤的有序集合 方法包含于类或对象中 ...
- 《python编程:从入门到实践》课后习题及答案
转载: <Python编程:从入门到实践>课后习题及答案-码农之家 (xz577.com) <Python编程:从入门到实践>课后习题及答案 - 信德维拉 - 博客园 (cnb ...
- 如何快速体验鸿蒙全新声明式UI框架ArkUI?
HDC2021将于10月22日在东莞松山湖正式开幕,大会将设立Codelab体验专区,超多好玩.有趣的Demo等你体验.想快速入门HarmonyOS?学习HarmonyOS新特性?以下几个Codela ...