题面传送门

一道推式子题。

首先列出柿子,\(ans=\sum\limits_{T_2}|T_1\cap T_2|·2^{T_1\cap T_2}\)

这个东西没法直接处理,不过注意到有一个柿子 \(f(S)=\sum\limits_{T\subseteq S}\sum\limits_{T'\subseteq T}(-1)^{T-T'}f(T')\),证明可考虑计算每个 \(T'\) 的贡献,由于 \(T'\subseteq T\subseteq S\),\(T\) 必然是 \(T'\) 与 \(S-T'\) 的某个子集的并,于是我们尝试枚举这个子集的大小,可得 \(T'\) 在对这个柿子结果的贡献为 \(f(T')\sum\limits_{i=0}^{|S-T'|}\dbinom{|S-T'|}{i}(-1)^i=0^{|S-T'|}·f(T')\),因此只有当 \(T'=S\) 时对结果产生 \(f(T')\) 的贡献,其余 \(T'\) 的贡献均为 \(0\),得证。

考虑将这个柿子应用于这道题上,记 \(f(S)=|S|·2^{|S|}\),那么

\[\begin{aligned}
ans&=\sum\limits_{T_2}f(T_1\cap T_2)\\
&=\sum\limits_{T_2}\sum\limits_{S\subseteq(T_1\cap T_2)}\sum\limits_{T\subseteq S}f(T)(-1)^{|S|-|T|}\\
&=\sum\limits_{S\in T_1}\sum\limits_{T\subseteq S}f(T)(-1)^{|S|-|T|}(\sum\limits_{S\in T_2}1)\\
&=\sum\limits_{S\in T_1}\sum\limits_{T\subseteq S}2^{|T|}·|T|·(-1)^{|S|\color{red}{+}|T|}(\sum\limits_{S\in T_2}1)\\
&=\sum\limits_{S\in T_1}(-1)^{|S|}\sum\limits_{T\subseteq S}(-2)^{|T|}·|T|·(\sum\limits_{S\in T_2}1)\\
&=\sum\limits_{S\in T_1}(-1)^{|S|}\sum\limits_{i=0}^{|S|}(-2)^i·i·\dbinom{|S|}{i}·(\sum\limits_{S\in T_2}1)\\
&=\sum\limits_{S\in T_1}(-1)^{|S|}\sum\limits_{i=0}^{|S|}(-2)^i·|S|·\dbinom{|S|-1}{i-1}·(\sum\limits_{S\in T_2}1)&\text{(吸收恒等式)}\\
&=\sum\limits_{S\in T_1}(-1)^{|S|}·|S|·\sum\limits_{i=0}^{|S|-1}(-2)^{i+1}·\dbinom{|S|-1}{i}·(\sum\limits_{S\in T_2}1)\\
&=\sum\limits_{S\in T_1}(-1)^{|S|}·|S|·(-2)·\sum\limits_{i=0}^{|S|-1}(-2)^{i}·\dbinom{|S|-1}{i}·1^{|S|-1-i}·(\sum\limits_{S\in T_2}1)\\
&=\sum\limits_{S\in T_1}(-1)^{|S|}·|S|·(-2)·(-1)^{|S|-1}·(\sum\limits_{S\in T_2}1)\\
&=\sum\limits_{S\in T_1}2|S|·(\sum\limits_{S\in T_2}1)
\end{aligned}
\]

推到这里,聪明的你一定已经发现,\(\sum\limits_{S\in T_2}1\) 就是包含 \(S\) 当中边的生成树个数,于是题目要求的就是对于所有边集 \(S\),包含 \(S\) 的生成树个数乘上 \(S\) 的大小之和,而又根据我们在这里推得的结论:包含 \(S\) 的生成树个数就是 \(n^{r-2}\prod\limits_{i=1}^ra_i\),其中 \(r\) 为 \(S\) 中的边形成的连通块个数,\(a_1,a_2,\cdots,a_r\) 为这 \(r\) 个连通块的大小。

于是答案可进一步可进一步写成 \(2\sum\limits_{S\in T_1}|S|n^{r-2}\prod\limits_{i=1}^ra_i=\dfrac{2}{n^2}\sum\limits_{S\in T_1}|S|\prod\limits_{i=1}^rna_i\),此时这玩意儿的组合意义就异常明显了:选择一个边集将这棵树分成若干个连通块,再从每个连通块中选择一个点,产生 \(n\) 的乘积贡献,最后从选定的边集中选择一条边,球所有选法的贡献之和。

这样就可以 DP 了,\(dp_{u,0/1,0/1}\) 表示确定了以 \(u\) 为根的子树内连通块的划分情况,\(u\) 所在的连通块是否选择了点,\(u\) 子树内是否有边被选择的方案数,树上背包转移即可。

时间复杂度 \(\mathcal O(16n)\)(虽然我深知这个写法非常不规范/cy/cy)

const int MAXN=2e6;
const int MOD=998244353;
int qpow(int x,int e){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
int n,hd[MAXN+5],to[MAXN*2+5],nxt[MAXN*2+5],ec=0;
void adde(int u,int v){to[++ec]=v;nxt[ec]=hd[u];hd[u]=ec;}
int dp[MAXN+5][2][2],tmp[2][2];
void dfs(int x,int f){
dp[x][0][0]=1;dp[x][1][0]=n;
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(y==f) continue;dfs(y,x);fill0(tmp);
for(int p=0;p<2;p++) for(int q=0;q<2;q++)//not seperate and not choose
for(int u=0;u+p<2;u++) for(int v=0;v+q<2;v++)
tmp[u+p][v+q]=(tmp[u+p][v+q]+1ll*dp[x][p][q]*dp[y][u][v])%MOD;
for(int p=0;p<2;p++) for(int u=0;u+p<2;u++) tmp[u+p][1]=(tmp[u+p][1]+1ll*dp[x][p][0]*dp[y][u][0])%MOD;//not seperate and choose
for(int p=0;p<2;p++) for(int q=0;q<2;q++) for(int v=0;v+q<2;v++)//seperate
tmp[p][v+q]=(tmp[p][v+q]+1ll*dp[x][p][q]*dp[y][1][v])%MOD;
for(int p=0;p<2;p++) for(int q=0;q<2;q++) dp[x][p][q]=tmp[p][q];
} //printf("%d %d %d %d %d\n",x,dp[x][0][0],dp[x][0][1],dp[x][1][0],dp[x][1][1]);
}
int main(){
scanf("%d",&n);
for(int i=1,u,v;i<n;i++) scanf("%d%d",&u,&v),adde(u,v),adde(v,u);
dfs(1,0);printf("%d\n",2ll*qpow(n,MOD-3)*dp[1][1][1]%MOD);
return 0;
}

LOJ 3399 -「2020-2021 集训队作业」Communication Network(推式子+组合意义+树形 DP)的更多相关文章

  1. 「2020-2021 集训队作业」Yet Another Linear Algebra Problem(行列式,Binet-Cauchy 公式)

    题面 出题人:T L Y \tt TLY TLY 太阳神:Tiw_Air_OAO 「 2020 - 2021 集 训 队 作 业 」 Y e t A n o t h e r L i n e a r A ...

  2. Loj #2731 「JOISC 2016 Day 1」棋盘游戏

    Loj 2731 「JOISC 2016 Day 1」棋盘游戏 JOI 君有一个棋盘,棋盘上有 \(N\) 行 \(3\) 列 的格子.JOI 君有若干棋子,并想用它们来玩一个游戏.初始状态棋盘上至少 ...

  3. [LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞

    [LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞 试题描述 到河北省 见斯大林 / 在月光下 你的背影 / 让我们一起跳舞吧 うそだよ~ 河北省怎么可能有 Stalin. ...

  4. loj #6250. 「CodePlus 2017 11 月赛」找爸爸

    #6250. 「CodePlus 2017 11 月赛」找爸爸 题目描述 小 A 最近一直在找自己的爸爸,用什么办法呢,就是 DNA 比对. 小 A 有一套自己的 DNA 序列比较方法,其最终目标是最 ...

  5. LOJ 2737 「JOISC 2016 Day 3」电报 ——思路+基环树DP

    题目:https://loj.ac/problem/2737 相连的关系形成若干环 / 内向基环树 .如果不是只有一个环的话,就得断开一些边使得图变成若干链.边的边权是以它为出边的点的点权. 基环树的 ...

  6. LOJ 2736 「JOISC 2016 Day 3」回转寿司 ——堆+分块思路

    题目:https://loj.ac/problem/2736 如果每个询问都是 l = 1 , r = n ,那么每次输出序列的 n 个数与本次操作的数的最大值即可.可以用堆维护. 不同区间的询问,可 ...

  7. LOJ 510: 「LibreOJ NOI Round #1」北校门外的回忆

    题目传送门:LOJ #510. 题意简述: 给出一个在 \(K\) 进制下的树状数组,但是它的实现有问题. 形式化地说,令 \(\mathrm{lowbit}(x)\) 为在 \(K\) 进制下的 \ ...

  8. loj 2392「JOISC 2017 Day 1」烟花棒

    loj 答案显然满足二分性,先二分一个速度\(v\) 然后显然所有没有点火的都会往中间点火的人方向走,并且如果两个人相遇不会马上点火,要等到火快熄灭的时候才点火,所以这两个人之后应该在一起行动.另外有 ...

  9. @loj - 6353@「CodePlus 2018 4 月赛」组合数问题 2

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 请你找到 k 个不同的组合数,使得对于其中任何一个组合数 \(C ...

随机推荐

  1. 欧姆龙PLC HostLink协议整理

    欧姆龙PLC HostLink协议整理 1.常用的存储器功能区 CIO: 输入继电器  272 点(17 CH) 0.00-16.15 输出继电器  272 点(17 CH) 100.00-116.1 ...

  2. BUAA SE 个人项目作业

    项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 个人项目作业 我在这个课程的目标是 通过个人项目实践熟悉个人开发流程 一.在文章开头给出教学班级和 ...

  3. Spring Cloud Gateway 网关限流

    Spring Cloud Gateway 限流 一.背景 二.实现功能 三.网关层限流 1.使用默认的redis来限流 1.引入jar包 2.编写配置文件 3.网关正常响应 4.网关限流响应 2.自定 ...

  4. VS2017+QT5.12.10+QGIS3.16环境搭建及开发全流程

    题记:大力发展生产力,助力高效采集.(转载请注明出处https://www.cnblogs.com/1024bytes/p/15477374.html) 本篇随笔分为五个部分: 一.获取QGIS3.1 ...

  5. [个人开源]vue-code-view:一个在线编辑、实时预览的代码交互组件

    组件简介 vue-code-view是一个基于 vue 2.x.轻量级的代码交互组件,在网页中实时编辑运行代码.预览效果的代码交互组件. 使用此组件, 不论 vue 页面还是 Markdown 文档中 ...

  6. POJ 3692 Kindergarten(二分图最大独立集)

    题意: 有G个女孩,B个男孩.女孩彼此互相认识,男孩也彼此互相认识.有M对男孩和女孩是认识的.分别是(g1,b1),.....(gm,bm). 现在老师要在这G+B个小孩中挑出一些人,条件是这些人都互 ...

  7. hdu 1083 Courses(二分图最大匹配)

    题意: P门课,N个学生.     (1<=P<=100    1<=N<=300) 每门课有若干个学生可以成为这门课的代表(即候选人). 又规定每个学生最多只能成为一门课的代 ...

  8. Github图床设置

    创建新仓库 点击右上角加号->新建仓库,填写基本信息后点击下面的创建即可 https://github.com/new 创建新令牌 点击设置->开发者设置->私人令牌->生成新 ...

  9. Vue2高级原理

    <div id="app">     <input type="text" v-model="username"> ...

  10. 用python写一个自动化盲注脚本

    前言 当我们进行SQL注入攻击时,当发现无法进行union注入或者报错等注入,那么,就需要考虑盲注了,当我们进行盲注时,需要通过页面的反馈(布尔盲注)或者相应时间(时间盲注),来一个字符一个字符的进行 ...