miRNA分析--比对(二)
在比对之前为了减少比对时间,将每一个样本中的reads进行合并,得到fasta格式,其命名规则如下:
样本_r数子_x数字
r 中的数字表示reads序号;
x 中的数字表示该条reads重复次数
比对分为两条策略
1、根据本物种已有的miRNA序列进行比对,
已知当miRNA序列从 miRBase或者 sRNAanno得到
(应该将clean reads比对到所研究物种到tRNA, rRNA, snoRNA,mRNA等数据,允许一个错配,将比对上等reads过滤,也可以比对到参考基因组,将为未比对到到reads过滤掉,但是本次我没有这么做)
对于第一种情况,我采用bowtie将reads比对到成熟miRNA
1 ##建立索引
2 bowtie-build ref.fa
3 ##比对
4 bowtie -v 0 -m 30 -p 10 -f ref.fa sample.fa sample.bwt
5 参数解释
6 -v: 允许0个错配
7 -p: 10个线程
8 -m: 当比对超过这个数时,认为时未比对
9 -f: 输入序列fasta
根据.bwt 文件可以计算出每个已知当miRNA中比对上当reads数量,别忘记乘以 x后面的数
2、直接比对到参考基因组并进行新miRNA鉴定
采用miR-PREFeR进行Novel miRNA鉴定
其githup主页:https://github.com/hangelwen/miR-PREFeR
需安装ViennaRNA ( 最好是1.8.5或2.1.2, 2.1.5版本)
1 #我装的是最新版
2 wget https://www.tbi.univie.ac.at/RNA/download/sourcecode/2_4_x/ViennaRNA-2.4.10.tar.gz
3 tar zvxf ViennaRNA-2.4.10.tar.gz
4 cd ViennaRNA-2.4.10
5 ./configure --prefix="/user/tools/ViennaRNA/" --without-perl
6 make
7 make install
安装
1 git clone https://github.com/hangelwen/miR-PREFeR.git
数据准备
️ref.fa
️miRNA 比对到ref.fa的sam文件 (sam 文件中的reads 必须是collapse reads )
️gff 文件(可选,记录需要屏蔽掉的信息,比如重复序列等)
bowtie 比对
1 bowtie -a -v 0 -m 30 -p 10 -f ref.fa sample.fa -S sample.sam
准备configure 文件
1 #example configuration file for the miR-PREFeR pipeline.
2 #lines start with '#' are comments
3
4 #miR-PREFeR path, please change to your path to the script folder.
5 #Absolute path perfered.
6 PIPELINE_PATH = /miR
7
8 #Genomic sequence file in fasta format. Absolute path perfered. If a path
9 #relative if used, it's relatvie to the working directory where you execute
10 #the pipeline.
11 FASTA_FILE = genome_v1.fa
12
13 #Small RNA read alignment file in SAM format. The SAM file should contain
14 #the SAM header. If N samples are used, then N file names are listed here,
15 #separated by comma. please note that before doing alignment, process the
16 #reads fasta files using the provided script 'process-reads-fasta.py' to
17 #collapse and rename the reads. Absolute path perfered. If a path
18 #relative if used, it's relatvie to the working directory where you execute
19 #the pipeline.
20 ALIGNMENT_FILE = ./trm_XX-1_L1_I309.R1.fastq_trm_fa.fa.sam, ./trm_XX-2_L1_I310.R1.fastq_trm_fa.fa.sam, ./trm_XX-3_L1_I311.R1.fastq_trm_fa.fa.sam, ./trm_XY-1_L1_I312.R1.fastq_trm_fa.fa.sam, ./trm_XY-2_L1_I313.R1.fastq_trm_fa.fa.sam, ./trm_XY-3_L1_I314.R1.fastq_trm_fa.fa.sam, ./trm_YY-1_L1_I315.R1.fastq_trm_fa.fa.sam, ./trm_YY-2_L1_I316.R1.fastq_trm_fa.fa.sam, ./trm_YY-3_L1_I332.R1.fastq_trm_fa.fa.sam
21
22 #GFF file which list all existing annotations on genomic sequences FASTA_FILE.
23 #If no GFF file is availble, comment this line out or leave the value blank.
24 #Absolute path perfered. If a path relative if used, it's relatvie to the
25 #working directory where you execute the pipeline.
26 #CAUTION: please only list the CDS regions, not the entire miRNA region, because
27 #miRNAs could be in introns. This option is mutual exclusive with 'GFF_FILE_INCLUDE'
28 #option.
29 # If you have a GFF file that contains regions in which you want to predict whehter
30 # they include miRNAs, please use the 'GFF_FILE_INCLUDE' option instead.
31 GFF_FILE_EXCLUDE = CDS.gff
32
33 # Only predict miRNAs from the regions given in the GFF file. This option is mutual
34 # exclusive with 'GFF_FILE_EXCLUDE'. Thus, only one of them can be used.
35 #GFF_FILE_INCLUDE = ./TAIR10.chr1.candidate.gff
36
37 #The max length of a miRNA precursor. The range is from 60 to 3000. The default
38 #is 300.
39 PRECURSOR_LEN = 300
40
41 #The first step of the pipeline is to identify candidate regions of the miRNA
42 #loci. If READS_DEPTH_CUTOFF = N, then bases that the mapped depth is smaller
43 #than N is not considered. The value should >=2.
44 READS_DEPTH_CUTOFF = 20
45
46 #Number of processes for this computation. Using more processes speeds up the computation,
47 #especially if you have a multi-core processor. If you have N cores avalible for the
48 #computation, it's better to set this value in the range of N to 2*N.
49 #If comment out or leave blank, 1 is used.
50 NUM_OF_CORE = 4
51
52 #Outputfolder. If not specified, use the current working directory. Please make sure that
53 #you have enough disk space for the folder, otherwise the pipeline may fail.
54 OUTFOLDER = spinach-result
55
56 #Absolute path of the folder that contains intermidate/temperary files during the
57 # run of the pipeline. If not specified, miR-PREFeR uses a folder with suffix "_tmp"
58 #under OUTFOLDER by default. Please make sure that you have enough disk space for the
59 # folder, otherwise the pipeline may fail.
60 #TMPFOLDER = /tmp/exmaple
61 TMPFOLDER =
62
63 #prefix for naming the output files. For portability, please DO NOT contain any
64 #spaces and special characters. The prefered includes 'A-Z', 'a-z', '0-9', and
65 #underscore '_'.
66 NAME_PREFIX = spinach-example
67
68 #Maximum gap length between two contigs to form a candidate region.
69 MAX_GAP = 100
70
71 # Minimum and maximum length of the mature sequence. Default values are 18 and 24.
72 MIN_MATURE_LEN = 18
73 MAX_MATURE_LEN = 24
74
75 # If this is 'Y', then the criteria that requries the star sequence must be expressed
76 # is loosed if the expression pattern is good enough (.e.g. the majority of the reads
77 # mapped to the region are mapped to the mature position.). There are lots of miRNAs
78 # which do not have star sequence expression. The default value is Y.
79 ALLOW_NO_STAR_EXPRESSION = Y
80
81 # In most cases, the mature star duplex has 2nt 3' overhangs. If this is set to 'Y', then
82 # 3nt overhangs are allowed. Default is 'N'.
83 ALLOW_3NT_OVERHANG = N
84
85 #The pipeline makes a checkpoint after each major step. In addition, because the
86 #folding stage is the most time consuming stage, it makes a checkpiont for each
87 #folding process after folding every CHECKPOINT_SIZE sequences. If the pipeline
88 #is killed for some reason in the middle of folding, it can be restarted using
89 #'recover' command from where it was stopped. The default value is 3000. On my
90 #system this means making a checkpoint about every 5 minutes.
91 CHECKPOINT_SIZE = 3000
运行
1 python miR_PREFeR.py -L -k pipeline configfile
pipeline里包含prepare, candidate, fold, predict四步。如果某步中断了,还可以续跑
1 python miR_PREFeR.py -L recover configfile
输出结果
根据example_miRNA.detail.csv 文件 写一个脚本 提取每个miRNA的reads 数量,进而做差异分析
差异分析
差异分析采用DESeq2, 可看我之前写的miRAN 分析以及mRNA分析
关注下方公众号可获得更多精彩
ref
2、省心省事的植物miRNA分析软件miR-PREFeR,值得拥有
miRNA分析--比对(二)的更多相关文章
- miRNA分析--靶基因预测(三)
miRNA分析--数据过滤(一) miRNA分析--比对(二) 根据miRNA Target Prediction in Plants, miRNA并非所有区域都要求严格匹配,其中第1位碱基和第14位 ...
- iOS----- Crash 分析(文二)-崩溃日志组成
iOS Crash 分析(文二)-崩溃日志组成 现在我们看一个淘宝iOS主客崩溃的例子: ### 1.进程信息 ### Incident Identifier: E4201F10-6F5F-40F9- ...
- 手机自动化测试:appium源码分析之bootstrap二
手机自动化测试:appium源码分析之bootstrap二 在bootstrap项目中的io.appium.android.bootstrap.handler包中的类都是对应的指令类, priva ...
- 【RxJava Demo分析】(二)Schedulers线程调度器 · Hans Zone
用Schedulers(调度器)实现多任务(并发,Concurrency)的例子 废话不多说我们看一下有关于RxJava的代码: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
- 分析轮子(二)- << ,>>,>> (左移、右移、无符号右移)
前言:写 分析轮子(一)-ArrayList.java 的时候看到源码中有 int newCapacity = oldCapacity + (oldCapacity >> 1); 这样的代 ...
- Netty源码分析之NioEventLoop(二)—NioEventLoop的启动
上篇文章中我们对Netty中NioEventLoop创建流程与源码进行了跟踪分析.本篇文章中我们接着分析NioEventLoop的启动流程: Netty中会在服务端启动和新连接接入时通过chooser ...
- Python 爬虫知识点 - 淘宝商品检索结果抓包分析(续二)
一.URL分析 通过对“Python机器学习”结果抓包分析,有两个无规律的参数:_ksTS和callback.通过构建如下URL可以获得目标关键词的检索结果,如下所示: https://s.taoba ...
- yolov3源码分析keras(二)损失函数计算
一.前言 损失函数计算主要分析两部分一部分是yolo_head函数的分析另一部分为ignore_mask的生成的分析. 二.重要细节分析 2.1损失函数计算具体代码及部分分析 def yolo_los ...
- spark 源码分析之十二 -- Spark内置RPC机制剖析之八Spark RPC总结
在spark 源码分析之五 -- Spark内置RPC机制剖析之一创建NettyRpcEnv中,剖析了NettyRpcEnv的创建过程. Dispatcher.NettyStreamManager.T ...
随机推荐
- undefined reference to `recvIpcMsg(int, ipc_msg*)'——#ifdef __cplusplus extern "C" { #endif
最近在弄一个进程间通信,原始测试demon用c语言写的,经过测试ok,然后把接口封装起来了一个send,一个recv. 使用的时候send端是在一个c语言写的http服务端使用,编译ok没有报错,但是 ...
- P2598 [ZJOI2009]狼和羊的故事(最小割)
P2598 [ZJOI2009]狼和羊的故事 说真的,要多练练网络流的题了,这么简单的网络流就看不出来... 题目要求我们要求将狼和羊分开,也就是最小割,(等等什么逻辑...头大....) 我们这样想 ...
- hdu 1848 Fibonacci again and again (SG)
题意: 3堆石头,个数分别是m,n,p. 两个轮流走,每走一步可以选择任意一堆石子,然后取走f个.f只能是菲波那契中的数(即1,2,3,5,8.....) 取光所有石子的人胜. 判断先手胜还是后手胜. ...
- Xtrabackup 全量备份脚本
#!/bin/bash #备份文件的名字为当前主机的IP地址+tar.gz,例如172.16.103.1.tar.gz,且每次备份成功之后都会清空本地的备份目录. #相关目录 mkdir -p /xt ...
- 一文了解cookie
@ 目录 什么是Cookie? Cookie 的作用 Cookie原理 Cookie的分类 会话 Cookies 永久性 Cookies Cookie 的属性 name value Domain Pa ...
- mybatis插入数据时处理为null的属性
在做项目的时候,数据库中的所有字段被设置为全都不能为null,但是在我们开发过程中,插入一些记录的时候,实体类中的一些字段如果页面没有传入,则默认就会被设置为null,这样的话,在执行插入语句的时候, ...
- 在同级路径下,SpringBoot两种类型的配置文件(.properties/.yml)同时存在时,配置优先级如何处理?
两类配置文件如果同时存在,若 key 相同则 properties 优先级高,若key不同则合并加载:
- Python 爬取 书籍
... import requests from bs4 import BeautifulSoup def gethtml(url,h): r = requests.get(url,headers=h ...
- Docker Compose 容器编排 NET Core 6+MySQL 8+Nginx + Redis
环境: CentOS 8.5.2111Docker 20.10.10Docker-Compose 2.1.0 服务: db redis web nginx NET Core 6+MySQL 8+N ...
- 美团饿了么领取外卖优惠券微信小程序的开发及上线_怎样点外卖省钱_外卖小程序的开发及上线
都1202年了,估计没人不知道外卖了,那么就有两种人在思考两种问题: 普通人:怎么点外卖划算? 程序员:怎么通过外卖赚钱? 话不多说,为了让你们相信我有能力来讲这块内容,先给你们看一个很简单的小程序: ...