上次TYVJ有一道裸LIS,然而我当时直接打了一个N^2暴力就草草了事,然后就ZZ了,只拿了60分,其实NlogN的LIS和N^2的差的不多,只是没有N^2,好想罢了,鉴于某学弟的要求,所以就重现一下金哥当年讲LIS的风范。

  首先,LIS指的是最长上升子序列。指的是我们要求出一个在母序列中找出一些元素,在保证这个子序列上升的同时,保证这个序列是整个母序列里满足这一要求的最长序列。

  那么我们可以直接这样想,我们要保证当前所拼接的链最大,那么对于每一个元素来说,可以直接一遍循环判断它能够属于哪一个链,使当前以这个元素为结尾的链所接的元素个数最多,也就是所得的结果越大。

  那么对于一个元素ai,可以直接找a1到ai-1的元素中ai链在哪一个元素所得解最优,最优解放在f[i]里,这种对于所有情况的判断,很明显是DP,那么,转移方程就是:f[i]=a[j]<a[i]?max(f[j]+1,f[i]):f[i]

  那么明显的,这是一个N^2的算法,对于每一个元素要求以前是否有能够找到更优解的上一步元素,一个判断N遍。

  那如何得到一个更优算法捏?

  其实很简单,让我们先回顾刚才我们所做的操作,我们对于当前的一个元素,找前面所算过的所有结果,试图找出更优解。我们在做这一工作时,也找了很多肯定不为最优解的元素,这是一件很浪费的事情,那么我们可以找一个优化这一过程的方法。

  我们知道,对于任意一个元素,使它的解更优的方案肯定是a[i]小,并且f[i]大的一个理想元素,因为对于这样的一个理想元素,才可能使后面的解更优,而最大的f[i]是有限的,所以,我们很轻易得想到一个优化方法:

  使用一个数组d,用d[i]记录当前  f[i]  为  i  的  a[i]最小的元素,d随着元素的向后递推逐渐维护。

  开一个数组就能使LIS更优吗?答案是当然的,原因很简单,我们发现,我们所维护的这个d数组是递增的,这一结论可以通过反证法易证。既然这一数组是递增的,我们就可以轻易的通过二分来得到最优解。

  所以,对于每一个元素做一遍二分,显而易见复杂度是nlogn的。

附上一道水题 codevs

LIS问题是最经典的动态规划基础问题之一。如果要求一个满足一定条件的最长上升子序列,你还能解决吗?

给出一个长度为N整数序列,请求出它的包含第K个元素的最长上升子序列。

例如:对于长度为6的序列<2,7,3,4,8,5>,它的最长上升子序列为<2,3,4,5>,但如果限制一定要包含第2个元素,那么满足此要求的最长上升子序列就只能是<2,7,8>了。

输入描述 Input Description

第一行为两个整数N,K,如上所述。

接下来是N个整数,描述一个序列。

输出描述 Output Description

请输出两个整数,即包含第K个元素的最长上升子序列长度。

样例输入 Sample Input

8 6

65 158 170 299 300 155 207 389

样例输出 Sample Output

4

数据范围及提示 Data Size & Hint

80%的数据,满足0<n<=1000,0<k<=n

    100%的数据,满足0<n<=200000,0<k<=n

 #include<stdio.h>
int cnt,n,a[],best[];
void push(int x)
{
int L=,R=cnt;
int mid;
while(L<=R)
{
mid=(L+R)/;
if(x>best[mid]){
L=mid+;
if(best[L]>x)best[L]=x;
}
else R=mid-;
}
}
int main()
{
int k,i;
scanf("%d%d",&n,&k);k--;
for(i=;i<=n-;i++)
{
scanf("%d",&a[i]);
if(i>k&&a[i]<=a[k]){i--;n--;
}
}
for(i=;i<=k-;i++)
if(a[i]>=a[k])a[i]=;
for(i=;i<=n-;i++)
{
if(a[i]<best[cnt]&&a[i])push(a[i]);
else if(a[i])best[++cnt]=a[i];
}
printf("%d",cnt);
return ;
}

算法描述》关于LIS的nlogn方法的更多相关文章

  1. 算法进阶 (LIS变形) 固定长度截取求最长不下降子序列【动态规划】【树状数组】

    先学习下LIS最长上升子序列 ​ 看了大佬的文章OTZ:最长上升子序列 (LIS) 详解+例题模板 (全),其中包含普通O(n)算法*和以LIS长度及末尾元素成立数组的普通O(nlogn)算法,当然还 ...

  2. BZOJ 1609 [Usaco2008 Feb]Eating Together麻烦的聚餐:LIS & LDS (nlogn)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1609 题意: 给你一个只由数字"1,2,3"组成的序列a[i],共n个 ...

  3. 第四十四个知识点:在ECC密码学方案中,描述一些基本的防御方法

    第四十四个知识点:在ECC密码学方案中,描述一些基本的防御方法 原文地址:http://bristolcrypto.blogspot.com/2015/08/52-things-number-44-d ...

  4. 海量数据挖掘MMDS week2: 频繁项集挖掘 Apriori算法的改进:非hash方法

    http://blog.csdn.net/pipisorry/article/details/48914067 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  5. 迪杰斯特拉(Dijkstra)算法描述及理解

    Dijkstra算法是一种计算单源最短无负边路径问题的常用算法之一,时间复杂度为O(n2) 算法描述如下:dis[v]表示s到v的距离,pre[v]为v的前驱结点,用以输出路径,vis[v]表示该点最 ...

  6. 算法描述》LCA两三事(蒟蒻向)

    LCA是图论中常用的解决树形结构子问题的工具,这一问题一般需要用一个简短的子函数直接解决,但是这对于广大蒟蒻们仍然是一个不小的问题. LCA是指在树形结构中两点的最近公共祖先,对于这个问题,直接向上找 ...

  7. 最长上升子序列(LIS)nlogn模板

    参考https://www.cnblogs.com/yuelian/p/8745807.html 注意最长上升子序列用lower_bound,最长不下降子序列用upper_bound 比如123458 ...

  8. LIS(nlogn)算法描述//线性DP经典类型

    题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹 ...

  9. 算法心得1:由$nlogn$复杂度的LIS算法引起的思考

    LIS(Longest Increasing Subsequence)是一类典型的动态规划类问题,简化描述如下: 给定$N(n) = \{1,2...,n\}$的一个排列$P(n)$,求$P(n)$中 ...

随机推荐

  1. setInterval()和setTimeout()可以接收更多的参数

    setInterval()和setTimeout()可以接收更多的参数,那么这些参数是干什么用的呢?从第三个参数开始,依次用来表示第一个参数(回调函数)传入的参数,例如: setTimeout(fun ...

  2. InpOut32 InputTest.cpp hacking

    /************************************************************************************ * InpOut32 Inp ...

  3. [转载] ffmpeg函数介绍

    本文对在使用ffmpeg进行音视频编解码时使用到的一些函数做一个简单介绍,我当前使用的ffmpeg版本为:0.8.5,因为本人发现在不同的版本中,有些函数名称会有点小改动,所以在此有必要说明下ffmp ...

  4. Python之xpath

    xpath是一种在XML文档中定位元素的语言,常用于xml.html文件解析,比css选择器使用方便XML文件最小构成单元: - element(元素节点) - attribute(属性节点) - t ...

  5. 剑指offer-第五章优化时间和空间效率(连续子数组的最大和)

    题目:输入一个数组,数组中有正也有负,数组中连续的一个或者连续的多个数字组成一个子数组.求所有的子数组和的最大值.要求时间复杂度为O(n) 思路:我们的最直观的想法就是求出这个数组中的所有的子数组,然 ...

  6. 【转载】对一致性Hash算法,Java代码实现的深入研究

    原文地址:http://www.cnblogs.com/xrq730/p/5186728.html 一致性Hash算法 关于一致性Hash算法,在我之前的博文中已经有多次提到了,MemCache超详细 ...

  7. (转)Download interrupted: Connection to https://dl-ssl.google.com refused

    (转)Download interrupted: Connection to https://dl-ssl.google.com refused   这个可能是网络问题,国内连google服务器经常连 ...

  8. 【Http认证方式】——Basic认证

    访问请求:http://192.168.2.113:8080/geoserver/rest/workspaces时,浏览器弹出窗口需要输入用户名和密码  ,并且,如果不输入或者输入错误,浏览器返回  ...

  9. 搭建Dynamic Web Project(动态web项目)的springmvc工程2

    本文转载自:http://blog.csdn.net/typa01_kk/article/details/45905129 此篇为“创建Dynamic Web Projec工程,”搭建Dynamic ...

  10. 使用wireshark观察SSL/TLS握手过程--双向认证/单向认证

    SSL/TLS握手过程可以分成两种类型: 1)SSL/TLS 双向认证,就是双方都会互相认证,也就是两者之间将会交换证书.2)SSL/TLS 单向认证,客户端会认证服务器端身份,而服务器端不会去对客户 ...