P2966 [USACO09DEC]牛收费路径Cow Toll Paths

题目描述

Like everyone else, FJ is always thinking up ways to increase his revenue. To this end, he has set up a series of tolls that the cows will pay when they traverse the cowpaths throughout the farm.

The cows move from any of the N (1 <= N <= 250) pastures conveniently numbered 1..N to any other pasture over a set of M (1 <= M <= 10,000) bidirectional cowpaths that connect pairs of different pastures A_j and B_j (1 <= A_j <= N; 1 <= B_j <= N). FJ has assigned a toll L_j (1 <= L_j <= 100,000) to the path connecting pastures A_j and B_j.

While there may be multiple cowpaths connecting the same pair of pastures, a cowpath will never connect a pasture to itself. Best of all, a cow can always move from any one pasture to any other pasture by following some sequence of cowpaths.

In an act that can only be described as greedy, FJ has also assigned a toll C_i (1 <= C_i <= 100,000) to every pasture. The cost of moving from one pasture to some different pasture is the sum of the tolls for each of the cowpaths that were traversed plus a *single additional toll* that is the maximum of all the pasture tolls encountered along the way, including the initial and destination pastures.

The patient cows wish to investigate their options. They want you to write a program that accepts K (1 <= K <= 10,000) queries and outputs the minimum cost of trip specified by each query. Query i is a pair of numbers s_i and t_i (1 <= s_i <= N; 1 <= t_i <= N; s_i != t_i) specifying a starting and ending pasture.

Consider this example diagram with five pastures:

The 'edge toll' for the path from pasture 1 to pasture 2 is 3. Pasture 2's 'node toll' is 5.

To travel from pasture 1 to pasture 4, traverse pastures 1 to 3 to 5 to 4. This incurs an edge toll of 2+1+1=4 and a node toll of 4 (since pasture 5's toll is greatest), for a total cost of 4+4=8.

The best way to travel from pasture 2 to pasture 3 is to traverse pastures 2 to 5 to 3. This incurs an edge toll of 3+1=4 and a node toll of 5, for a total cost of 4+5=9.

跟所有人一样,农夫约翰以着宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生 财之道。为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道路行走,都 要向农夫约翰上交过路费。 农场中由N(1 <= N <= 250)片草地(标号为1到N),并且有M(1 <= M <= 10000)条 双向道路连接草地A_j和B_j(1 <= A_j <= N; 1 <= B_j <= N)。

奶牛们从任意一片草 地出发可以抵达任意一片的草地。FJ已经在连接A_j和B_j的双向道路上设置一个过路费L_j (1 <= L_j <= 100,000)。 可能有多条道路连接相同的两片草地,但是不存在一条道路连接一片草地和这片草地本身。最 值得庆幸的是,奶牛从任意一篇草地出发,经过一系列的路径,总是可以抵达其它的任意一片 草地。 除了贪得无厌,叫兽都不知道该说什么好。

FJ竟然在每片草地上面也设置了一个过路费C_i (1 <= C_i <= 100000)。从一片草地到另外一片草地的费用,是经过的所有道路的过路 费之和,加上经过的所有的草地(包括起点和终点)的过路费的最大值。 任劳任怨的牛们希望去调查一下她们应该选择那一条路径。

她们要你写一个程序,接受K(1 <= K <= 10,000)个问题并且输出每个询问对应的最小花费。第i个问题包含两个数字s_i 和t_i(1 <= s_i <= N; 1 <= t_i <= N; s_i != t_i),表示起点和终点的草地。

输入输出格式

输入格式:

  • Line 1: Three space separated integers: N, M, and K

  • Lines 2..N+1: Line i+1 contains a single integer: C_i

  • Lines N+2..N+M+1: Line j+N+1 contains three space separated

integers: A_j, B_j, and L_j

  • Lines N+M+2..N+M+K+1: Line i+N+M+1 specifies query i using two space-separated integers: s_i and t_i

输出格式:

  • Lines 1..K: Line i contains a single integer which is the lowest cost of any route from s_i to t_i

输入输出样例

输入样例#1:

5 7 2
2
5
3
3
4
1 2 3
1 3 2
2 5 3
5 3 1
5 4 1
2 4 3
3 4 4
1 4
2 3
输出样例#1:

8
9

floyd中要先枚举中间点k,我们可以按照点权从小到大排序,在计算最大点权的时候只要考虑i,j,k三者中点权的最大值即可。

通过排序使得最大值变成当前点的点权。

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = ;
struct node{
int v,id;
bool operator < (const node &a) const
{
return v < a.v;
}
}c[MAXN];
int w[MAXN][MAXN];
int d[MAXN][MAXN];
int t[MAXN];
int n,m,q; void floyd()
{
for (int a=; a<=n; ++a)
{
int k = c[a].id;
for (int i=; i<=n; ++i)
for (int j=; j<=n; ++j)
{
d[i][j] = d[j][i] = min(d[i][k]+d[k][j],d[i][j]);
w[i][j] = w[j][i] = min(w[i][j],d[i][j]+max(c[a].v,max(t[i],t[j])));
}
}
}
int main()
{
memset(w,0x3f,sizeof(w));
scanf("%d%d%d",&n,&m,&q);
for (int i=; i<=n; ++i)
{
scanf("%d",&c[i].v);
c[i].id = i;
}
for (int i=; i<=n; i++)
for (int j=; j<=n; j++)
if (i!=j) d[i][j] = d[j][i] = w[i][j] = w[j][i] = 1e9;
else w[i][j] = w[j][i] = c[i].v;
sort(c+,c+n+);
for (int i=; i<=n; i++)
t[c[i].id] = c[i].v;
for (int x,y,z,i=; i<=m; ++i)
{
scanf("%d%d%d",&x,&y,&z);
if (z<d[x][y])
d[x][y]=d[y][x]=z;
}
floyd();
while (q--)
{
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",w[x][y]);
}
return ;
}

P2966 [USACO09DEC]牛收费路径Cow Toll Paths的更多相关文章

  1. Luogu P2966 [USACO09DEC]牛收费路径Cow Toll Paths

    题目描述 Like everyone else, FJ is always thinking up ways to increase his revenue. To this end, he has ...

  2. 洛谷 P2966 [USACO09DEC]牛收费路径Cow Toll Paths

    题目描述 Like everyone else, FJ is always thinking up ways to increase his revenue. To this end, he has ...

  3. [Luogu P2966][BZOJ 1774][USACO09DEC]牛收费路径Cow Toll Paths

    原题全英文的,粘贴个翻译题面,经过一定的修改. 跟所有人一样,农夫约翰以宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生财之道.为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道 ...

  4. [USACO09DEC]牛收费路径Cow Toll Paths(floyd、加路径上最大点权值的最短路径)

    https://www.luogu.org/problem/P2966 题目描述 Like everyone else, FJ is always thinking up ways to increa ...

  5. [USACO09DEC]牛收费路径Cow Toll Paths

    跟所有人一样,农夫约翰以着宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生 财之道.为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道路行走,都 要向农夫约翰上交过路费. 农场中 ...

  6. 洛谷 2966 2966 [USACO09DEC]牛收费路径Cow Toll Paths

    [题意概述] 给出一个图,点有正点权,边有正边权,通过两点的代价为两点间的最短路加上路径通过的点的点权最大值. 有M个询问,每次询问通过两点的代价. [题解] 先把点按照点权从小到大排序,然后按照这个 ...

  7. 【[USACO09DEC]牛收费路径Cow Toll Paths】

    很妙的一道题,我之前一直是用一个非常暴力的做法 就是枚举点权跑堆优化dijkstra 但是询问次数太多了 于是一直只有50分 今天终于抄做了这道题,不贴代码了,只说一下对这道题的理解 首先点权和边权不 ...

  8. P2966 [USACO09DEC]Cow Toll Paths G

    题意描述 Cow Toll Paths G 这道题翻译的是真的不错,特别是第一句话 给定一张有 \(n\) 个点 \(m\) 条边的无向图,每条边有边权,每个点有点权. 两点之间的路径长度为所有边权 ...

  9. [USACO09DEC] Cow Toll Paths

    https://www.luogu.org/problem/show?pid=2966 题目描述 Like everyone else, FJ is always thinking up ways t ...

随机推荐

  1. [原]Android打包之Eclipse打包

    Android自动打包流程详细图: 步骤一: 在工程中新建一个build.xml. 步骤二: 给工程配置ant工具. 选择ant工具的步骤如下: Windows->Shown view-> ...

  2. Java并发程序基础

    Thread.stop() 直接终止线程,并且会立即释放这个线程所持有的锁. Thread.interrupt() 并不会是线程立即退出,而是给线程发送一个通知,告知目标线程,有人希望你退出啦,至于目 ...

  3. HDU 2859 Phalanx(对称矩阵 经典dp样例)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=2859 Phalanx Time Limit: 10000/5000 MS (Java/Others)  ...

  4. tomcat的下载和启动

    1.下载和解压 把下载好的压缩包解压,放到想刚的目录里 看一下目录: 目录介绍: 2. 启动和访问 启动步骤: 如果startup.bat 双击执行脚本一闪而过,解决方法: 第一可能是:没有配置JAV ...

  5. Kinect骨架数据

  6. ContentProvider 、 ContentResolver 、 ContentObserver

    说说ContentProvider . ContentResolver . ContentObserver 之间的关系**a. ContentProvider 内容提供者,用于对外提供数据 b. Co ...

  7. Webpack4 学习笔记八 开发环境和生产环境配置

    webpack resolve属性 webpack 区分开发环境和生产环境 webpack resolve属性 该选项的作用是设置模块如何被解析. resolve.alias: 设置别名, 在vue中 ...

  8. 启用image-filter扩展模块

    进入lnmp目录打开lnmp.conf配置文件 修改Nginx_Modules_Options=' --prefix=/usr/local/nginx --with-http_image_filter ...

  9. 14.2 multiprocessing--多线程

    本模块提供了多进程进行共同协同工作的功能.由于Python存在GIL锁,对于多线程来说,这只是部分代码可以使用多CPU的优势,对于想全部使用多CPU的性能,让每一个任务都充分地使用CPU,那么使用多进 ...

  10. IDEA中使用插件添加更多可选择的主题,使代码高亮,缓解视觉疲劳

    1.点击 File-->settings(或Ctrl+Shift+S)打开IDE设置面板 点击plugins-->右侧选择Marketplace-->搜索框中输入Material-- ...