P2966 [USACO09DEC]牛收费路径Cow Toll Paths
P2966 [USACO09DEC]牛收费路径Cow Toll Paths
题目描述
Like everyone else, FJ is always thinking up ways to increase his revenue. To this end, he has set up a series of tolls that the cows will pay when they traverse the cowpaths throughout the farm.
The cows move from any of the N (1 <= N <= 250) pastures conveniently numbered 1..N to any other pasture over a set of M (1 <= M <= 10,000) bidirectional cowpaths that connect pairs of different pastures A_j and B_j (1 <= A_j <= N; 1 <= B_j <= N). FJ has assigned a toll L_j (1 <= L_j <= 100,000) to the path connecting pastures A_j and B_j.
While there may be multiple cowpaths connecting the same pair of pastures, a cowpath will never connect a pasture to itself. Best of all, a cow can always move from any one pasture to any other pasture by following some sequence of cowpaths.
In an act that can only be described as greedy, FJ has also assigned a toll C_i (1 <= C_i <= 100,000) to every pasture. The cost of moving from one pasture to some different pasture is the sum of the tolls for each of the cowpaths that were traversed plus a *single additional toll* that is the maximum of all the pasture tolls encountered along the way, including the initial and destination pastures.
The patient cows wish to investigate their options. They want you to write a program that accepts K (1 <= K <= 10,000) queries and outputs the minimum cost of trip specified by each query. Query i is a pair of numbers s_i and t_i (1 <= s_i <= N; 1 <= t_i <= N; s_i != t_i) specifying a starting and ending pasture.
Consider this example diagram with five pastures:
The 'edge toll' for the path from pasture 1 to pasture 2 is 3. Pasture 2's 'node toll' is 5.
To travel from pasture 1 to pasture 4, traverse pastures 1 to 3 to 5 to 4. This incurs an edge toll of 2+1+1=4 and a node toll of 4 (since pasture 5's toll is greatest), for a total cost of 4+4=8.
The best way to travel from pasture 2 to pasture 3 is to traverse pastures 2 to 5 to 3. This incurs an edge toll of 3+1=4 and a node toll of 5, for a total cost of 4+5=9.
跟所有人一样,农夫约翰以着宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生 财之道。为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道路行走,都 要向农夫约翰上交过路费。 农场中由N(1 <= N <= 250)片草地(标号为1到N),并且有M(1 <= M <= 10000)条 双向道路连接草地A_j和B_j(1 <= A_j <= N; 1 <= B_j <= N)。
奶牛们从任意一片草 地出发可以抵达任意一片的草地。FJ已经在连接A_j和B_j的双向道路上设置一个过路费L_j (1 <= L_j <= 100,000)。 可能有多条道路连接相同的两片草地,但是不存在一条道路连接一片草地和这片草地本身。最 值得庆幸的是,奶牛从任意一篇草地出发,经过一系列的路径,总是可以抵达其它的任意一片 草地。 除了贪得无厌,叫兽都不知道该说什么好。
FJ竟然在每片草地上面也设置了一个过路费C_i (1 <= C_i <= 100000)。从一片草地到另外一片草地的费用,是经过的所有道路的过路 费之和,加上经过的所有的草地(包括起点和终点)的过路费的最大值。 任劳任怨的牛们希望去调查一下她们应该选择那一条路径。
她们要你写一个程序,接受K(1 <= K <= 10,000)个问题并且输出每个询问对应的最小花费。第i个问题包含两个数字s_i 和t_i(1 <= s_i <= N; 1 <= t_i <= N; s_i != t_i),表示起点和终点的草地。
输入输出格式
输入格式:
Line 1: Three space separated integers: N, M, and K
Lines 2..N+1: Line i+1 contains a single integer: C_i
- Lines N+2..N+M+1: Line j+N+1 contains three space separated
integers: A_j, B_j, and L_j
- Lines N+M+2..N+M+K+1: Line i+N+M+1 specifies query i using two space-separated integers: s_i and t_i
输出格式:
- Lines 1..K: Line i contains a single integer which is the lowest cost of any route from s_i to t_i
输入输出样例
5 7 2
2
5
3
3
4
1 2 3
1 3 2
2 5 3
5 3 1
5 4 1
2 4 3
3 4 4
1 4
2 3
8
9
floyd中要先枚举中间点k,我们可以按照点权从小到大排序,在计算最大点权的时候只要考虑i,j,k三者中点权的最大值即可。
通过排序使得最大值变成当前点的点权。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = ;
struct node{
int v,id;
bool operator < (const node &a) const
{
return v < a.v;
}
}c[MAXN];
int w[MAXN][MAXN];
int d[MAXN][MAXN];
int t[MAXN];
int n,m,q; void floyd()
{
for (int a=; a<=n; ++a)
{
int k = c[a].id;
for (int i=; i<=n; ++i)
for (int j=; j<=n; ++j)
{
d[i][j] = d[j][i] = min(d[i][k]+d[k][j],d[i][j]);
w[i][j] = w[j][i] = min(w[i][j],d[i][j]+max(c[a].v,max(t[i],t[j])));
}
}
}
int main()
{
memset(w,0x3f,sizeof(w));
scanf("%d%d%d",&n,&m,&q);
for (int i=; i<=n; ++i)
{
scanf("%d",&c[i].v);
c[i].id = i;
}
for (int i=; i<=n; i++)
for (int j=; j<=n; j++)
if (i!=j) d[i][j] = d[j][i] = w[i][j] = w[j][i] = 1e9;
else w[i][j] = w[j][i] = c[i].v;
sort(c+,c+n+);
for (int i=; i<=n; i++)
t[c[i].id] = c[i].v;
for (int x,y,z,i=; i<=m; ++i)
{
scanf("%d%d%d",&x,&y,&z);
if (z<d[x][y])
d[x][y]=d[y][x]=z;
}
floyd();
while (q--)
{
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",w[x][y]);
}
return ;
}
P2966 [USACO09DEC]牛收费路径Cow Toll Paths的更多相关文章
- Luogu P2966 [USACO09DEC]牛收费路径Cow Toll Paths
题目描述 Like everyone else, FJ is always thinking up ways to increase his revenue. To this end, he has ...
- 洛谷 P2966 [USACO09DEC]牛收费路径Cow Toll Paths
题目描述 Like everyone else, FJ is always thinking up ways to increase his revenue. To this end, he has ...
- [Luogu P2966][BZOJ 1774][USACO09DEC]牛收费路径Cow Toll Paths
原题全英文的,粘贴个翻译题面,经过一定的修改. 跟所有人一样,农夫约翰以宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生财之道.为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道 ...
- [USACO09DEC]牛收费路径Cow Toll Paths(floyd、加路径上最大点权值的最短路径)
https://www.luogu.org/problem/P2966 题目描述 Like everyone else, FJ is always thinking up ways to increa ...
- [USACO09DEC]牛收费路径Cow Toll Paths
跟所有人一样,农夫约翰以着宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生 财之道.为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道路行走,都 要向农夫约翰上交过路费. 农场中 ...
- 洛谷 2966 2966 [USACO09DEC]牛收费路径Cow Toll Paths
[题意概述] 给出一个图,点有正点权,边有正边权,通过两点的代价为两点间的最短路加上路径通过的点的点权最大值. 有M个询问,每次询问通过两点的代价. [题解] 先把点按照点权从小到大排序,然后按照这个 ...
- 【[USACO09DEC]牛收费路径Cow Toll Paths】
很妙的一道题,我之前一直是用一个非常暴力的做法 就是枚举点权跑堆优化dijkstra 但是询问次数太多了 于是一直只有50分 今天终于抄做了这道题,不贴代码了,只说一下对这道题的理解 首先点权和边权不 ...
- P2966 [USACO09DEC]Cow Toll Paths G
题意描述 Cow Toll Paths G 这道题翻译的是真的不错,特别是第一句话 给定一张有 \(n\) 个点 \(m\) 条边的无向图,每条边有边权,每个点有点权. 两点之间的路径长度为所有边权 ...
- [USACO09DEC] Cow Toll Paths
https://www.luogu.org/problem/show?pid=2966 题目描述 Like everyone else, FJ is always thinking up ways t ...
随机推荐
- oozie 完整流程实例
Oozie概述: Oozie是一个基于Hadoop工作流引擎,也可以称为调度器,它以xml的形式写调度流程,可以调度mr,pig,hive,shell,jar,spark等等.在实际工作中,遇到对数据 ...
- 【[HEOI2012]采花】
\(HH\)的项链加强版,数据范围和题意都加强了 题意大概:给出n个数,求区间出现次数>=2的数的个数. 一眼莫队,可是我还不会莫队啊 那就树状数组吧 回忆一下\(HH\)的项链,套路差不多,那 ...
- Spring Boot 推荐的基础 POM 文件
名称 说明 spring-boot-starter 核心 POM,包含自动配置支持.日志库和对 YAML 配置文件的支持. spring-boot-starter-amqp 通过 spring-rab ...
- HTML5之canvas基本API介绍及应用 1
一.canvas的API: 1.颜色.样式和阴影: 2.线条样式属性和方法: 3.路径方法: 4.转换方法: 5.文本属性和方法: 6.像素操作方法和属性: 7.其他: drawImage:向画布上绘 ...
- webapi是如何绑定参数的(How WebAPI does Parameter Binding)
原文地址 由于工作原因,要使用ASP.NET WEBAPI(非mvc webapi),前几天时间一直很紧张,所以webapi一直将就用,今天下午好不容易有时间终于看了下,解决了自己一直疑惑的问题,在此 ...
- Entity Framework 一
本篇主要介绍:EntityFramework简介, 实体框架架构图, EF版本 实体框架: 编写和管理数据访问的ADO.Net代码是一件单调乏味的工作.微软已经提供了一个名为“实体框架”的O / RM ...
- GoBelieve Android SDK接入备忘
Android SDK版本 目前SDK只支持Android 2.2或以上版本的手机系统. AndroidManifest.xml配置 以下配置可以在IMDemo/AndroidManifest.xml ...
- java 后台返回文件流到浏览器
package com.springbootblog.controller; import io.swagger.annotations.ApiImplicitParam;import io.swag ...
- Js操作DOM及获取浏览器高度以及宽度
1.获取网页可见区域的宽度:document.body.clientWidth ; 2.获取网页可见区域的高度:document.body.clientHeight; 3.获取 网页可见区域宽:doc ...
- MySql Connector/C++8简介
MySql Connector/C++8是一个用于连接MySQL服务器的C++应用程序.Connector/C++8可用于访问实现文档存储的 MySQL服务器,或者使用SQL查询以传统方式访问.它支持 ...