序列分割

Time Limit: 40 Sec  Memory Limit: 128 MB
[Submit][Status][Discuss]

Description

  小H最近迷上了一个分隔序列的游戏。在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列。为了得到k+1个子序列,小H需要重复k次以下的步骤:
  1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的序列——也就是一开始得到的整个序列);
  2.选择一个位置,并通过这个位置将这个序列分割成连续的两个非空的新序列。
  每次进行上述步骤之后,小H将会得到一定的分数。这个分数为两个新序列中元素和的乘积。小H希望选择一种最佳的分割方式,使得k轮之后,小H的总得分最大。

Input

  输入第一行包含两个整数n,k(k+1≤n)。
  第二行包含n个非负整数a1,a2,...,an(0≤ai≤10^4),表示一开始小H得到的序列。

Output

  输出第一行包含一个整数,为小H可以得到的最大分数。

Sample Input

  7 3
  4 1 3 4 0 2 3

Sample Output

  108

  在样例中,小H可以通过如下3轮操作得到108分:
  1.开始小H有一个序列(4,1,3,4,0,2,3)。
  小H选择在第1个数之后的位置将序列分成两部分,并得到4×(1+3+4+0+2+3)=52分。
  2.这一轮开始时小H有两个序列:(4),(1,3,4,0,2,3)。
  小H选择在第3个数字之后的位置将第二个序列分成两部分,并得到(1+3)×(4+0+2+3)=36分。
  3.这一轮开始时小H有三个序列:(4),(1,3),(4,0,2,3)。
  小H选择在第5个数字之后的位置将第三个序列分成两部分,并得到(4+0)×(2+3)=20分。
  经过上述三轮操作,小H将会得到四个子序列:(4),(1,3),(4,0),(2,3)并总共得到52+36+20=108分。

HINT

  2≤n≤100000 , 1≤k≤min(n -1,200)。

Main idea

  将一个序列分成k段,定义权值和为两两段的累加和的乘积,求出最大权值和。

Source

  首先发现n<=10^5,k<=200,我们先想这应该是一道DP,然后发现了原题中的操作(每次分为两段然后再分)经过分配是可以转化为题意这样的,这样的话答案就与分的顺序无关了。
  一开始我想到了一个O(n^3*k)的做法,每次分割出i~j段,然后发现由于与顺序无关这个性质,可以转化成每次分割第i个位置, 那么我们得到了状态:f[a][i]表示分割第a次,第a次在第i个位置分的答案。
  然后立马想到了转移方程:f[a][i]=max(f[a][i],f[a-1][j]+s[j]*(s[i]-s[j])) (其中s[i]表示1~i的和),这样的话效率是O(n^2*k),然后我们考虑如何优化。大胆猜测可以使用斜率优化。
  首先假定k<j,且j的决策更优,那么使得条件成立的式子(以下f[j]表示f[a-1][j]):

  令x[i]表示f[a-1][i]-s[i]*s[i],y[i]表示s[i],该式子即可表示为:(x[j]-x[k]) / (y[j]-y[k]) > -s[i]
  然后斜率优化维护一下上凸壳(取max值)即可,效率即为O(n*k)。
  注意一下内存限制128MB,所以我们将第一维a滚动即可,由于用的是斜率优化维护凸壳,所以我们一开始需要将a[i]=0的去掉否则答案会偏小。

  PS:
  总结一下斜率优化推式子的精髓:假定k<j且j的决策更优,然后列出不等式,去掉只与i有关的项(这时候可能存在s[j]*s[i]这种项式),然后将不等式移项,使得不等号右边仅有与s[i]有关的项(即与j,k无关),然后根据最大值或者最小值决定维护上凸壳或下凸壳。

Code

 #include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std; const int ONE=; int T,n,m;
int a[ONE];
int tou,wei;
long long s[ONE];
long long f[][ONE];
int q[ONE]; int get()
{
int res=,Q=;char c;
while( (c=getchar())< || c> )
if(c=='-')Q=-;
res=c-;
while( (c=getchar())>= && c<= )
res=res*+c-;
return res*Q;
} double slope(int a,int j,int k)
{
double xj,xk,yj,yk;
xj=f[!a][j]-s[j]*s[j]; xk=f[!a][k]-s[k]*s[k];
yj=s[j]; yk=s[k];
return (xj-xk)/(yj-yk);
} int main()
{
// freopen("s.in","r",stdin);
//freopen("s.out","w",stdout);
T=get(); m=get(); int begin=;
for(int i=;i<=T;i++)
{
a[i]=get();
if(a[i]) a[++n]=a[i];
}
for(int i=;i<=n;i++) s[i]=s[i-]+a[i]; int A=,B=,jishu=;
for(int a=;a<=m;a++)
{
swap(A,B);
tou=wei=;
for(int i=;i<=n;i++)
{
while(tou<wei && slope(B,q[wei],q[wei-]) < slope(B,i,q[wei])) wei--;
q[++wei]=i; while(tou<wei && slope(B,q[tou+],q[tou]) > -s[i]) tou++; f[B][i]=max(f[B][i],f[A][q[tou]] + s[i]*s[q[tou]] - s[q[tou]]*s[q[tou]] );
}
} printf("%lld",f[B][n]);
}

【BZOJ3675】【APIO2014】序列分割 [斜率优化DP]的更多相关文章

  1. bzoj3675[Apio2014]序列分割 斜率优化dp

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 3508  Solved: 1402[Submit][Stat ...

  2. 【bzoj3675】[Apio2014]序列分割 斜率优化dp

    原文地址:http://www.cnblogs.com/GXZlegend/p/6835179.html 题目描述 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列 ...

  3. [APIO2014]序列分割 --- 斜率优化DP

    [APIO2014]序列分割 题目大意: 你正在玩一个关于长度为\(n\)的非负整数序列的游戏.这个游戏中你需要把序列分成\(k+1\)个非空的块.为了得到\(k+1\)块,你需要重复下面的操作\(k ...

  4. BZOJ3675: [Apio2014]序列分割(斜率优化)

    Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 4186  Solved: 1629[Submit][Status][Discuss] Descript ...

  5. BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)

    洛谷传送门 题目大意:让你把序列切割k次,每次切割你能获得 这一整块两侧数字和的乘积 的分数,求最大的分数并输出切割方案 神题= = 搞了半天也没有想到切割顺序竟然和答案无关...我太弱了 证明很简单 ...

  6. BZOJ 3675 APIO2014 序列切割 斜率优化DP

    题意:链接 方法:斜率优化DP 解析:这题BZ的数据我也是跪了,特意去网上找到当年的数据后面二十个最大的点都过了.就是过不了BZ. 看到这道题自己第一发DP是这么推得: 设f[i][j]是第j次分第i ...

  7. P3648 [APIO2014]序列分割 斜率优化

    题解:斜率优化\(DP\) 提交:\(2\)次(特意没开\(long\ long\),然后就死了) 题解: 好的先把自己的式子推了出来: 朴素: 定义\(f[i][j]\)表示前\(i\)个数进行\( ...

  8. BZOJ 3675: 序列分割 (斜率优化dp)

    Description 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列.为了得到k+1个子序列,小H需要重复k次以下的步骤: 1.小H首 ...

  9. 2018.09.29 bzoj3675: [Apio2014]序列分割(斜率优化dp)

    传送门 斜率优化dp经典题目. 首先需要证明只要选择的K个断点是相同的,那么得到的答案也是相同的. 根据分治的思想,我们只需要证明有两个断点时成立,就能推出K个断点时成立. 我们设两个断点分成的三段连 ...

随机推荐

  1. Eclipse 导入项目与 svn 插件关联全过程记录

    文章摘自:http://www.cnblogs.com/xmmcn/archive/2013/03/01/2938365.html 感谢博友分享! Eclipse 导入项目与 svn 插件关联全过程记 ...

  2. EF使用报错说缺少引用

            在程序中已经引用了EF,也引用了System.Data,但是一起报这个错误:        在类前面也已经写了 using System.Data.Entity,百思不得其解,最后才发 ...

  3. 步骤:asp.net core中使用identifyserver4颁发令牌

    使用IdentityServer4颁发令牌基本步骤如下: 在 Startup.Configure 方法调用 app.UseIdentityServer ,添加IdentityServer4到应用的 H ...

  4. Linux服务架设篇--traceroute命令

    作用: 查看数据包在传输过程中经过了哪些IP地址的路由器.网关. 工作原理: 首先向远程主机发送TTL为1的UDP数据包,按照协议规定,路由器收到数据包,TTL值减1,这时TTL就为0,路由器就会丢弃 ...

  5. Cassandra 常见错误索引

    类型错误 类型错误调试的技巧 有时候,类型错误提示比较不友好,比如不知道哪个字段出错. 在php中可以用 //过滤几个数据进行操作,逐个检查,或者折半查找错误 $data = array_splice ...

  6. ubuntu中 VI 方向键、删除键问题

    这两天重新装的ubuntu系统,发觉使用VI时,方向键按下去后变成ABCD,删除键无效.网上搜寻一番,应该是VI软件本身的问题,顾卸载重装即可,步骤如下: 1.执行命令 sudo apt-get re ...

  7. JVM高级内存优化面试

    Sun HotSpot VM,是JDK和Open JDK中自带的虚拟机,也是目前使用范围最广的Java虚拟机. JVM内存分布程序计数器:是一块较小的内存空间,可以看作是当前线程所执行的字节码的行号指 ...

  8. libevent 多线程

    对于evbuffer,如果libevent使用了evthread_use_pthreads();那么所有的单个evbuffer操作就已经是原子的了,调用操作相关的接口进去就上锁,出来解锁,那么 evb ...

  9. javascript知识总结

    javascript: 面对对象 函数创建方式: 1.工厂模式 function createPerson(name, age, job){ var o = new Object(); //创建工厂对 ...

  10. Intellij Idea 创建Web项目入门

    相关软件: Intellij Idea14:http://pan.baidu.com/s/1nu16VyD JDK7:http://pan.baidu.com/s/1dEstJ5f Tomcat(ap ...