题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2982

明明是lucas定理裸题……

非常需要注意C( )里  if ( n<m ) return 0; !!!!!

可以预处理阶乘和其逆元,也可以现求。现求阶乘逆元的话,可以把 jc[m] 和 jc[n-m] 乘起来再放到pw里。

#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int mod=;
int T,n,m,jc[mod+],ans;
int pw(int x,int k)
{
int ret=;while(k){if(k&)(ret*=x)%=mod;x=(ll)x*x%mod;k>>=;}return ret;
}
void init()
{
jc[]=;
for(int i=;i<mod;i++)jc[i]=jc[i-]*i%mod;
}
int C(int n,int m)
{
if(n<m)return ;//
return (ll)jc[n]*pw(jc[m]*jc[n-m],mod-)%mod;//jc[m]*jc[n-m]一起求逆元
}
int lucas(int n,int m)
{
if(!m)return ;
if(n<mod&&m<mod)return C(n,m);
return lucas(n/mod,m/mod)*C(n%mod,m%mod)%mod;
}
int main()
{
init();
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
printf("%d\n",lucas(n,m));
}
return ;
}

现求阶乘逆元

#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int mod=;
ll n,m;
int T,jc[mod+],jcn[mod+],ans;
int pw(int x,int k)
{
int ret=;while(k){if(k&)(ret*=x)%=mod;(x*=x)%=mod;k>>=;}return ret;
}
void init()
{
jc[]=;
for(int i=;i<mod;i++)jc[i]=jc[i-]*i%mod;
jcn[mod-]=pw(jc[mod-],mod-);
for(int i=mod-;i>=;i--)jcn[i]=jcn[i+]*(i+)%mod;
}
int C(int n,int m)
{
if(n<m)return ;////
return jc[n]*jcn[m]%mod*jcn[n-m]%mod;
}
int lucas(ll n,ll m)
{
if(!m)return ;
if(n<mod&&m<mod)return C(n,m);
return lucas(n/mod,m/mod)*C(n%mod,m%mod)%mod;
}
int main()
{
init();
scanf("%d",&T);
while(T--)
{
scanf("%lld%lld",&n,&m);
printf("%d\n",lucas(n,m));
}
return ;
}

bzoj 2982 combination——lucas模板的更多相关文章

  1. BZOJ 2982: combination Lucas模板题

    Code: #include<bits/stdc++.h> #define ll long long #define maxn 1000003 using namespace std; c ...

  2. ZOJ 3557 & BZOJ 2982 combination[Lucas定理]

    How Many Sets II Time Limit: 2 Seconds      Memory Limit: 65536 KB Given a set S = {1, 2, ..., n}, n ...

  3. BZOJ 2982: combination( lucas )

    lucas裸题. C(m,n) = C(m/p,n/p)*C(m%p,n%p). ----------------------------------------------------------- ...

  4. BZOJ 2982 combination Lucas定理

    题目大意:发上来就过不了审核了--总之大意就是求C(n,m) mod 10007 m,n∈[1,2*10^8] 卢卡斯定理:C(n,m)=C(n%p,m%p)*C(n/p,m/p) mod p 要求p ...

  5. BZOJ2982: combination Lucas模板

    2982: combination Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 734  Solved: 437[Submit][Status][Di ...

  6. bzoj——2982: combination

    2982: combination Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 611  Solved: 368[Submit][Status][Di ...

  7. BZOJ 2982 combination

    lucas定理裸题. #include<iostream> #include<cstdio> #include<cstring> #include<algor ...

  8. BZOJ 2982 combination 脑子+组合数学

    可以发现,整个数列构成一个树形结构,并且是个完全二叉堆(小根堆). 并且这个堆的形态在给定$n$后是固定的,第1个位置上显然只能放1. 对子树的根来说,他自己是所分得的数集中最小的那个,所以从剩下$s ...

  9. 【BZOJ 2982】 2982: combination (卢卡斯定理)

    2982: combination Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 510  Solved: 316 Description LMZ有n个 ...

随机推荐

  1. Python编程-多线程

    一.python并发编程之多线程 1.threading模块 multiprocess模块的完全模仿了threading模块的接口,二者在使用层面,有很大的相似性,因而不再详细介绍 1.1 开启线程的 ...

  2. 跨平台移动开发 手机上使用Iscroll.Js的Banner

    二话不说,直接上图,看效果 需要使用Iscroll <script src="content/scripts/iscroll.js"></script> 示 ...

  3. blast+学习之search tools

    search tools:blastn, blastp, blastx, tblastx, tblastn, psiblast, rpsblast, and rpstblastn 1.blastn: ...

  4. linux输入子系统简述【转】

    本文转载自:http://blog.csdn.net/xubin341719/article/details/7678035 1,linux输入子系统简述 其实驱动这部分大多还是转载别人的,linux ...

  5. Kubernetes client-go

    Github地址:https://github.com/kubernetes/client-go 访问kubernetes集群有几下几种方式: 方式 特点 支持者 Kubernetes dashboa ...

  6. Kubernetes Resource Qoutas

    配置参数: spec.containers[].resources.limits.cpu spec.containers[].resources.limits.memory spec.containe ...

  7. 用js将一个数组合并到另一个数组中

    var arr1 = ["one","two","three"]; var arr2 = ["1","2&qu ...

  8. JAVA8新特性——方法引用

    JAVA9都要出来了,JAVA8新特性都没搞清楚,是不是有点掉队哦~ 在Lamda新特性的支持下,JAVA8中可以使用lamda表达式来创建匿名方法.然而,有时候我们仅仅是需要调用一个已存在的方法(如 ...

  9. bzoj 1101 zap 莫比乌斯

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MB Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给 ...

  10. JavaScrip 原生多文件上传及预览 兼容多浏览器

    JavaScrip 原生多文件上传及预览 兼容多浏览器 html代码块 <div class="container"> <label>请选择一个图像文件:& ...