下方是pandas中resample方法的定义,帮助文档http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling中有更加详细的解释。

    def resample(self, rule, how=None, axis=0, fill_method=None, closed=None,
label=None, convention='start', kind=None, loffset=None,
limit=None, base=0, on=None, level=None):
"""
Convenience method for frequency conversion and resampling of time
series. Object must have a datetime-like index (DatetimeIndex,
PeriodIndex, or TimedeltaIndex), or pass datetime-like values
to the on or level keyword.(数据重采样和频率转换,数据必须有时间类型的索引列) Parameters
----------
rule : string
the offset string or object representing target conversion(代表目标转换的偏移量)
axis : int, optional, default 0(操作的轴信息)
closed : {'right', 'left'}
Which side of bin interval is closed. The default is 'left'
for all frequency offsets except for 'M', 'A', 'Q', 'BM',
'BA', 'BQ', and 'W' which all have a default of 'right'.(哪一个方向的间隔是关闭的,)
label : {'right', 'left'}
Which bin edge label to label bucket with. The default is 'left'
for all frequency offsets except for 'M', 'A', 'Q', 'BM',
'BA', 'BQ', and 'W' which all have a default of 'right'.(区间的哪一个方向的边界标签保留)
convention : {'start', 'end', 's', 'e'}
For PeriodIndex only, controls whether to use the start or end of
`rule`
kind: {'timestamp', 'period'}, optional
Pass 'timestamp' to convert the resulting index to a
``DateTimeIndex`` or 'period' to convert it to a ``PeriodIndex``.
By default the input representation is retained.
loffset : timedelta
Adjust the resampled time labels
base : int, default 0
For frequencies that evenly subdivide 1 day, the "origin" of the
aggregated intervals. For example, for '5min' frequency, base could
range from 0 through 4. Defaults to 0
on : string, optional
For a DataFrame, column to use instead of index for resampling.
Column must be datetime-like. .. versionadded:: 0.19.0 level : string or int, optional
For a MultiIndex, level (name or number) to use for
resampling. Level must be datetime-like. .. versionadded:: 0.19.0 Returns
-------
Resampler object Notes
-----
See the `user guide
<http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling>`_
for more. To learn more about the offset strings, please see `this link
<http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. Examples
-------- Start by creating a series with 9 one minute timestamps.(新建频率为1min的时间序列) >>> index = pd.date_range('1/1/2000', periods=9, freq='T')
>>> series = pd.Series(range(9), index=index)
>>> series
2000-01-01 00:00:00 0
2000-01-01 00:01:00 1
2000-01-01 00:02:00 2
2000-01-01 00:03:00 3
2000-01-01 00:04:00 4
2000-01-01 00:05:00 5
2000-01-01 00:06:00 6
2000-01-01 00:07:00 7
2000-01-01 00:08:00 8
Freq: T, dtype: int64 Downsample the series into 3 minute bins and sum the values
of the timestamps falling into a bin.(下采样为三分钟) >>> series.resample('3T').sum()
2000-01-01 00:00:00 3
2000-01-01 00:03:00 12
2000-01-01 00:06:00 21
Freq: 3T, dtype: int64 Downsample the series into 3 minute bins as above, but label each
bin using the right edge instead of the left. Please note that the
value in the bucket used as the label is not included in the bucket,
which it labels. For example, in the original series the
bucket ``2000-01-01 00:03:00`` contains the value 3, but the summed
value in the resampled bucket with the label ``2000-01-01 00:03:00``
does not include 3 (if it did, the summed value would be 6, not 3).
To include this value close the right side of the bin interval as
illustrated in the example below this one. >>> series.resample('3T', label='right').sum()(保留间隔的右侧标签,上一个结果是左侧标签)
2000-01-01 00:03:00 3
2000-01-01 00:06:00 12
2000-01-01 00:09:00 21
Freq: 3T, dtype: int64 Downsample the series into 3 minute bins as above, but close the right
side of the bin interval.(降采样为3分钟) >>> series.resample('3T', label='right', closed='right').sum()
2000-01-01 00:00:00 0
2000-01-01 00:03:00 6
2000-01-01 00:06:00 15
2000-01-01 00:09:00 15
Freq: 3T, dtype: int64 Upsample the series into 30 second bins.(生采样为30秒) >>> series.resample('30S').asfreq()[0:5] #select first 5 rows
2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 1.0
2000-01-01 00:01:30 NaN
2000-01-01 00:02:00 2.0
Freq: 30S, dtype: float64 Upsample the series into 30 second bins and fill the ``NaN``
values using the ``pad`` method.(向前0阶保持)
pad/ffill:用前一个非缺失值去填充该缺失值
backfill/bfill:用下一个非缺失值填充该缺失值
        >>> series.resample('30S').pad()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 0
2000-01-01 00:01:00 1
2000-01-01 00:01:30 1
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64 Upsample the series into 30 second bins and fill the
``NaN`` values using the ``bfill`` method.(向后0阶保持) >>> series.resample('30S').bfill()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 1
2000-01-01 00:01:00 1
2000-01-01 00:01:30 2
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64 Pass a custom function via ``apply`` >>> def custom_resampler(array_like):
... return np.sum(array_like)+5 >>> series.resample('3T').apply(custom_resampler)
2000-01-01 00:00:00 8
2000-01-01 00:03:00 17
2000-01-01 00:06:00 26
Freq: 3T, dtype: int64 For a Series with a PeriodIndex, the keyword `convention` can be
used to control whether to use the start or end of `rule`. >>> s = pd.Series([1, 2], index=pd.period_range('2012-01-01',
freq='A',
periods=2))
>>> s
2012 1
2013 2
Freq: A-DEC, dtype: int64 Resample by month using 'start' `convention`. Values are assigned to
the first month of the period. >>> s.resample('M', convention='start').asfreq().head()
2012-01 1.0
2012-02 NaN
2012-03 NaN
2012-04 NaN
2012-05 NaN
Freq: M, dtype: float64 Resample by month using 'end' `convention`. Values are assigned to
the last month of the period. >>> s.resample('M', convention='end').asfreq()
2012-12 1.0
2013-01 NaN
2013-02 NaN
2013-03 NaN
2013-04 NaN
2013-05 NaN
2013-06 NaN
2013-07 NaN
2013-08 NaN
2013-09 NaN
2013-10 NaN
2013-11 NaN
2013-12 2.0
Freq: M, dtype: float64 For DataFrame objects, the keyword ``on`` can be used to specify the
column instead of the index for resampling. >>> df = pd.DataFrame(data=9*[range(4)], columns=['a', 'b', 'c', 'd'])
>>> df['time'] = pd.date_range('1/1/2000', periods=9, freq='T')
>>> df.resample('3T', on='time').sum()
a b c d
time
2000-01-01 00:00:00 0 3 6 9
2000-01-01 00:03:00 0 3 6 9
2000-01-01 00:06:00 0 3 6 9 For a DataFrame with MultiIndex, the keyword ``level`` can be used to
specify on level the resampling needs to take place. >>> time = pd.date_range('1/1/2000', periods=5, freq='T')
>>> df2 = pd.DataFrame(data=10*[range(4)],
columns=['a', 'b', 'c', 'd'],
index=pd.MultiIndex.from_product([time, [1, 2]])
)
>>> df2.resample('3T', level=0).sum()
a b c d
2000-01-01 00:00:00 0 6 12 18
2000-01-01 00:03:00 0 4 8 12

Python数据分析(三)pandas resample 重采样的更多相关文章

  1. Python数据分析库pandas基本操作

    Python数据分析库pandas基本操作2017年02月20日 17:09:06 birdlove1987 阅读数:22631 标签: python 数据分析 pandas 更多 个人分类: Pyt ...

  2. Python数据分析之pandas基本数据结构:Series、DataFrame

    1引言 本文总结Pandas中两种常用的数据类型: (1)Series是一种一维的带标签数组对象. (2)DataFrame,二维,Series容器 2 Series数组 2.1 Series数组构成 ...

  3. Python 数据分析:Pandas 缺省值的判断

    Python 数据分析:Pandas 缺省值的判断 背景 我们从数据库中取出数据存入 Pandas None 转换成 NaN 或 NaT.但是,我们将 Pandas 数据写入数据库时又需要转换成 No ...

  4. Python数据分析之Pandas操作大全

    从头到尾都是手码的,文中的所有示例也都是在Pycharm中运行过的,自己整理笔记的最大好处在于可以按照自己的思路来构建矿建,等到将来在需要的时候能够以最快的速度看懂并应用=_= 注:为方便表述,本章设 ...

  5. Python数据分析之pandas学习

    Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利 ...

  6. python数据分析之pandas数据选取:df[] df.loc[] df.iloc[] df.ix[] df.at[] df.iat[]

    1 引言 Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用.本文主要介绍Pandas的几种数据选取的方法. Pandas中,数据主要保存为Dataframe和Se ...

  7. Python数据分析之pandas

    Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利 ...

  8. Python数据分析之pandas学习(基础操作)

    一.pandas数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Series类似于numpy中的一维数组,除了通吃一维数组可用的函数或方法,而且其 ...

  9. python数据分析三个重要方法之:numpy和pandas

    关于数据分析的组件之一:numpy ndarray的属性     4个必记参数:ndim:维度shape:形状(各维度的长度)size:总长度dtype:元素类型   一:np.array()产生n维 ...

随机推荐

  1. httpd的prefork、worker、event

    Apache(httpd) 有3种核心MPM(Multi-Processing Module,多进程处理模块)工作模式,分别是prefork,worker和event,其中httpd-2.2的even ...

  2. android 自定义滑动按钮

    第一接触公司项目就让我画页面,而且还涉及到我最讨厌的自定义view  但是没办法,讨厌也必须要做啊,经过百度上资源的查找,终于写出了一个滑动控件.废话不多说,上代码. package com.eton ...

  3. JDK9 新特性

    JDK9 新特性目录导航 目录结构 模块化系统 jshell 多版本兼容JAR 接口的私有方法 改进try-with-resourcs 改进砖石操作符 限制使用单独下划线标识符 String存储结构变 ...

  4. tp3.2报错;syntax error, unexpected 'function' (T_FUNCTION), expecting identifier (T_STRING) or \\ (T_NS_SEPARATOR)

    出错原因:这个是php版本问题,laravel5.1的php版本要求是PHP >= 5.5.9,切换一下PHP版本就行.

  5. Thinkphp5所有页面验证用户是否登陆

    新建Base.php控制器,所有的页面继承自它 <?php namespace app\index\controller; use think\Controller; class Base ex ...

  6. django的查询集

    查询集表示从数据库中获取的对象集合,在管理器上调用某些过滤器方法会返回查询集,查询集可以含有零个.一个或多个过滤器.过滤器基于所给的参数限制查询的结果,从Sql的角度,查询集和select语句等价,过 ...

  7. 关于JUnit4无法支持多线程测试的解决方法

    转自:https://segmentfault.com/a/1190000003762719 其实junit是将test作为参数传递给了TestRunner的main函数.并通过main函数进行执行. ...

  8. Qt——菜单栏、工具栏、状态栏

    1.菜单栏 菜单栏的意义是将可点击触发最终事件的集中在一起,所以菜单栏中是QAction 添加菜单栏是QMainWindow的行为 QMenubar *menubar = this->addMe ...

  9. 详解jQuery中 .bind() vs .live() vs .delegate() vs .on() 的区别

    转载自:http://zhuzhichao.com/2013/12/differences-between-jquery-bind-vs-live/ 我见过很多开发者很困惑关于jQuery中的.bin ...

  10. **leetcode笔记--4 Sum of Two Integers

    question: Calculate the sum of two integers a and b, but you are not allowed to use the operator + a ...