Given a positive integer N, you should output the leftmost digit of N^N. 

InputThe input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow. 
Each test case contains a single positive integer N(1<=N<=1,000,000,000). 
OutputFor each test case, you should output the leftmost digit of N^N. 
Sample Input

2
3
4

Sample Output

2
2

Hint

In the first case, 3 * 3 * 3 = 27, so the leftmost digit is 2.
In the second case, 4 * 4 * 4 * 4 = 256, so the leftmost digit is 2.

感想:一看到大数求幂就想到了快速幂,之前还想着用字符数组装大数,输出字符数组第一位再转换成数值,后来想想好像不太可行···然后没绷住搜了题解,思路是这样的:

需要用到科学记数法和对数运算的知识。
我们把num*num的值记作:num * num=a * 10^n,其中1<a<10;
那么,通过两边取对数的方法得到num * log10(1.0 * num)=log10(a)+n,这时0<log10(a)<1;
令x=n+log10(a),得到log10(a)=x-n;所以a=10^(x-n);
n为整数部分,log10(a)为小数部分,由x=n+log10(a),可知(int)x=n;
最终a=10^(x-n)=10^(x-(int)x)

m=n^n(_int64);两边同取对数,得到,log10(m)=n*log10(n);再得到,m=10^(n*log10(n));

然后,对于10的整数次幂,第一位是1,所以,第一位数取决于n*log10(n)的小数部分。

1.求a=n^n的对数取整即位数m;【m=n*log10(n)

2.a除以10的m次方取整即最高位;【pow(n,n)/pow(10,m)

/*关键在于公式,以及在于num*log10(num)得到的结果要用long long转换为整数,而不能用int,因为int已经存不下了。*/

#include "stdio.h"
#include "string.h"
#include "math.h"
int main(int n)
{
int C;
double num;
double a;
double x;
scanf("%d", &C);
while(C--)
{
scanf("%lf", &num);
x = num * log10(num);
a = pow(10, x - (long long)x);
printf("%d\n", (int)a);
} }

  

 

HDU 1060 Leftmost Digit (数论,快速幂)的更多相关文章

  1. HDU 1060 Leftmost Digit(求N^N的第一位数字 log10的巧妙使用)

    Leftmost Digit Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  2. HDU 1060 Leftmost Digit【log10/求N^N的最高位数字是多少】

    Leftmost Digit Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  3. 题解报告:hdu 1061 Rightmost Digit(快速幂取模)

    Problem Description Given a positive integer N, you should output the most right digit of N^N. Input ...

  4. HDU 1060 Left-most Digit

    传送门 Leftmost Digit Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  5. HDU 1060  Leftmost Digit

    Leftmost Digit Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) T ...

  6. HDU 1061 Rightmost Digit (快速幂取模)

    题意:给定一个数,求n^n的个位数. 析:很简单么,不就是快速幂么,取余10,所以不用说了,如果不会快速幂,这个题肯定是周期的, 找一下就OK了. 代码如下: #include <iostrea ...

  7. HDU 1060 Leftmost Digit (数学/大数)

    Leftmost Digit Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  8. HDU 1061 Rightmost Digit( 快速幂水 )

    链接:传送门 题意:求 N^N 的个位 思路:快速幂水题 /********************************************************************** ...

  9. HDU 5451 Best Solver 数论 快速幂 2015沈阳icpc

    Best Solver Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 65535/102400 K (Java/Others)Tota ...

随机推荐

  1. BZOJ 2500 幸福的道路(race) 树上直径+平衡树

    structHeal { priority_queue<int> real; priority_queue<int> stack; void push(int x){ real ...

  2. HDU4370:0 or 1(最短路)

    0 or 1 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4370 Description: Given a n*n matrix Cij (1< ...

  3. Hadoop NameNode元数据相关文件目录解析

    在<Hadoop NameNode元数据相关文件目录解析>文章中提到NameNode的$dfs.namenode.name.dir/current/文件夹的几个文件: 1 current/ ...

  4. ibeacon UUID

    import sys; import uuid; s=uuid.uuid4().hex #s="f6bc15e0939046679be1866ec8a199dc" sys.stdo ...

  5. MSTest DeploymentItemAttribute

    该attribute可以把指定的文件拷贝到每次运行的Out目录下,比如有一个config文件,那么用下面的命令, [TestClass] [DeploymentItem("Default.c ...

  6. DIV的变高与变宽

    代码: <!DOCTYPE HTML><html><head> <meta charset="utf-8"> <title&g ...

  7. bzoj1855: [Scoi2010]股票交易 单调队列优化dp ||HDU 3401

    这道题就是典型的单调队列优化dp了 很明显状态转移的方式有三种 1.前一天不买不卖: dp[i][j]=max(dp[i-1][j],dp[i][j]) 2.前i-W-1天买进一些股: dp[i][j ...

  8. apache工作模式

    查看当前apache的工作模式 apachectl -l prefork模式 <IfModule prefork.c>StartServers 5MinSpareServers 5MaxS ...

  9. magento目录了解

    对magento目录的了解:

  10. bzoj 1067 特判

    这道题的大题思路就是模拟 假设给定的年份是x,y,首先分为4个大的情况,分别是 x的信息已知,y的信息已知 x的信息已知,y的信息未知 x的信息未知,y的情况已知 x的信息未知,y的情况未知 然后对于 ...