编辑距离问题

给定两个字符串S和T,对于T我们允许三种操作:
(1) 在任意位置添加任意字符
(2) 删除存在的任意字符
(3) 修改任意字符

问最少操作多少次可以把字符串T变成S?
例如: S=  “ABCF”   T = “DBFG”
那么我们可以
(1) 把D改为A
(2) 删掉G
(3) 加入C

所以答案是3。

输入

第1行:字符串a(a的长度 <= 1000)。
第2行:字符串b(b的长度 <= 1000)。
输出
输入a和b的编辑距离
输入示例

kitten
sitting
输出示例

3
请选取你熟悉的语言,并在下面的代码框中完成你的程序,注意数据范围,最终结果会造成Int32溢出,这样会输出错误的答案。
不同语言如何处理输入输出,请查看下面的语言说明。
【分析】
对于两个字符串a和b,dp[i][j]记录a的前i个字符转换到b的前j个字符的最小编辑距离。那么很容易得到转移方程 dp[i][j] = min(dp[i][j], dp[i-1][j-1] + a[i-1] == b[j-1] ? 0 : 1)。对每个dp[i][j],我们考虑直接从dp[i-1][j]或dp[i][j-1]加一个字符,所以初始为dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + 1。对于dp[0][i]和dp[i][0],显然都等于i。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define inf 0x3f3f3f3f
#define mod 1000000007
typedef long long ll;
using namespace std;
char a[];
char b[];
int dp[][];
int pre[][]; int main()
{
int i,j,len1,len2,last;
memset(dp,,sizeof(dp));
memset(pre,,sizeof(pre));
cin>>a>>b;
int n = strlen(a), m = strlen(b);
for(int i = ; i <= n; i ++) dp[i][] = i;
for(int i = ; i <= m; i ++) dp[][i] = i;
for(int i = ; i <= n; i ++)
{
for(int j = ; j <=m; j ++)
{
dp[i][j] = min(dp[i-][j], dp[i][j-]) + ;
dp[i][j] = min(dp[i][j], dp[i-][j-] + (a[i-] != b[j-]));
}
}
printf("%d\n", dp[n][m]);
return ;
}

51nod 编辑距离问题(动态规划)的更多相关文章

  1. CJOJ 1644 编辑距离 / Luogu 2758 编辑距离(动态规划)

    CJOJ 1644 编辑距离 / Luogu 2758 编辑距离(动态规划) Description 字符串是数据结构和计算机语言里很重要的数据类型,在计算机语言中,对于字符串我们有很多的操作定义,因 ...

  2. 51NOD 1183编辑距离(动态规划)

    >>点击进入原题测试<< 思路:这个题放在基础题,分值还是零分,好歹也给人家动态规划一点面子啊!刚开始写的想法是找到其最大公共字串,然后用两个字符串中最长字符串的长度减掉最大公 ...

  3. 编辑距离及其动态规划算法(Java代码)

    编辑距离概念描述 编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.一般情况下编辑操作包括: 将一个字符替换成另一个字符: 插入一个字符: 删除一个字 ...

  4. 算法笔记1 - 编辑距离及其动态规划算法(Java代码)

    转载请标注原链接:http://www.cnblogs.com/xczyd/p/3808035.html 编辑距离概念描述 编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个 ...

  5. 51nod1183 编辑距离【动态规划】

    编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除 ...

  6. 51nod 简单的动态规划

    1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...

  7. 51nod--1183 编辑距离(动态规划)

    题目: 1183 编辑距离 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指 ...

  8. 文本相似度 余弦值相似度算法 VS L氏编辑距离(动态规划)

    设置n为字符串s的长度.("我是个小仙女") 设置m为字符串t的长度.("我不是个小仙女") 如果n等于0,返回m并退出.如果m等于0,返回n并退出.构造两个向 ...

  9. 【TOJ 1072】编辑距离(动态规划)

    描述 假设字符串的基本操作仅为:删除一个字符.插入一个字符和将一个字符修改成另一个字符这三种操作. 我们把进行了一次上述三种操作的任意一种操作称为进行了一步字符基本操作. 下面我们定义两个字符串的编辑 ...

随机推荐

  1. Walk 解题报告

    Walk 题目描述 给定一棵 \(n\) 个节点的树,每条边的长度为 \(1\),同时有一个权值\(w\).定义一条路径的权值为路径上所有边的权值的最大公约数.现在对于任意 \(i \in [1,n] ...

  2. 自己模拟实现一下Google的赛马Doodle

    今天的Google Doodle是个动态的,是一个骑马的动态Doodle,是谷歌纪念英国实验摄影师埃德沃德·迈布里奇182周年诞辰,埃德沃德·迈布里奇是运动摄影的开创者,所以谷歌涂鸦以一个运动的摄影作 ...

  3. HttpClient测试类请求端和服务端即可能出现乱码的解决

    junit HttpClient 请求端 代码: package com.taotao.httpclient; import java.util.ArrayList; import java.util ...

  4. 解决mysql的日志文件过大的问题

    https://www.2cto.com/database/201203/122984.html

  5. 构建一个类jq的函数库

    jqfree core var $ = function(selector, context) { return new $.fn.init(selector, context); }; $.fn = ...

  6. hive连接数

    使用hive分析日志作业很多的时候,需要修改mysql的默认连接数 修改方法   打开/etc/my.cnf文件 在[mysqld]  中添加 max_connections=1000 重启mysql ...

  7. mavne问题解决---Dynamic Web Module 2.3 or newer

    一:前沿 maven问题的bug,其实是很烦人的,因为每次都是很纠结的去改这个bug,特别的烦人,这个bug也是使得我纠结了好久的,那个星期五自己搞了几个小时都没有解决下,之后星期一来百度Google ...

  8. ZOJ1450 Minimal Circle

    You are to write a program to find a circle which covers a set of points and has the minimal area. T ...

  9. 01-导航实例-QQ空间Demo示例程序源代码

    01-导航实例-QQ空间.zip62.4 KB // MJLoginViewController.h Map // //  MJLoginViewController.h //  01-导航实例-QQ ...

  10. postman接口间关联

    现有A.B两个接口,A接口返回的response的body中的部分数据,是B接口发起请求部分数据的来源. A接口response的body结构如下: { "address": &q ...