「TJOI2013」循环格
题目链接
\(Solution\)
我们观察发现循环格要满足每个点的入度都为\(1\)
证明:
我们假设每个点的入读不一定为\(1\),那么必定有一个或多个点的入度为0,那么则不满足循环格的定义,所以假设错误。所以每个点的入度必然为1。
所以这样我们就可以开始建图了。先进行拆点操作,将每个点拆成\(x\)和\(x'\)将\(x\)和\(S\)连接,流量为\(1\),费用为\(0\)再将\(x'\)和\(T\)连接,流量为\(1\),费用为\(0\)
最后对于每个点\(x\)将它和四周的\('\)点相连接。流量为1,费用的话在判断一下方向和字符是否相同,如果相同为\(0\),不同为\(1\)
\(end.\)
\(Code\)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int read() {
int x=0,f=1;
char c=getchar();
while(c<'0'||c>'9')
f=(c=='-')?-1:1,c=getchar();
while(c>='0'&&c<='9')
x=x*10+c-'0',c=getchar();
return x*f;
}
struct node {
int to,next,v,w;
} a[1000001];
int dis[10001],f[10001],pre[10001],fa[10001],s,t,n,m,head[10001],cnt,x,y,z,c;
void add(int x,int y,int c,int v) {
a[++cnt].to=y;
a[cnt].next=head[x];
a[cnt].v=c;
a[cnt].w=v;
head[x]=cnt;
}
queue < int > q;
int spfa() {
q.push(s);
memset(dis,127,sizeof(dis));
memset(f,0,sizeof(f));
f[s]=1,dis[s]=0;
int inf=dis[s+1];
while(!q.empty()) {
int now=q.front();
q.pop();
f[now]=0;
for(int i=head[now]; i; i=a[i].next) {
int v=a[i].to;
if(dis[v]>dis[now]+a[i].w&&a[i].v) {
dis[v]=dis[now]+a[i].w,pre[v]=i,fa[v]=now;
if(!f[v])
f[v]=1,q.push(v);
}
}
}
if(dis[t]!=inf)
return 1;
return 0;
}
int ans1,ans;
void anser() {
while(spfa()) {
int minx=2147483647;
for(int i=t; i!=s; i=fa[i])
minx=min(minx,a[pre[i]].v);
ans+=minx,ans1+=dis[t]*minx;
for(int i=t; i!=s; i=fa[i])
a[pre[i]].v-=minx,(pre[i]%2)?a[pre[i]+1].v+=minx:a[pre[i]-1].v+=minx;
}
}
char hh[10]= {'0','D','U','L','R'};
int fx[10]= {0,1,-1,0,0};
int fy[10]= {0,0,0,-1,1};
char ss[101][101],l[1001];
int main() {
int N=read(),M=read();
s=0,t=N*M*10,n=N*M;
for(int i=1; i<=n; i++)
add(s,i,1,0),add(i,s,0,0);
for(int i=1; i<=n; i++)
add(i+n,t,1,0),add(t,i+n,0,0);
for(int i=1; i<=N; i++) {
cin>>l;
for(int j=0; j<M; j++)
ss[i][j+1]=l[j];
}
for(int i=1; i<=N; i++)
for(int j=1; j<=M; j++) {
char pp=ss[i][j];
for(int k=1; k<=4; k++) {
int X=(i+fx[k]+N-1)%N+1,Y=(j+fy[k]+M-1)%M+1;
int now=(i-1)*M+j,nex=(X-1)*M+n+Y,o=(pp==hh[k])^1;
add(now,nex,1,o),add(nex,now,0,-o);
}
}
anser();
printf("%d",ans1);
}
「TJOI2013」循环格的更多相关文章
- LibreOJ2085 - 「NOI2016」循环之美
Portal Description 给出\(n,m(n,m\leq10^9)\)和\(k(k\leq2000)\),求在\(k\)进制下,有多少个数值不同的纯循环小数可以表示成\(\dfrac{x} ...
- 「NOI2016」循环之美 解题报告
「NOI2016」循环之美 对于小数\(\frac{a}{b}\),如果它在\(k\)进制下被统计,需要满足要求并且不重复. 不重复我们确保这个分数是最简分数即\((a,b)=1\) 满足要求需要满足 ...
- 「TJOI2013」最长上升子序列
「TJOI2013」最长上升子序列 传送门 这个 \(\text{DP}\) 应该都会撒: \[dp_i = \max_{j < i,a_j < a_i}\left\{dp_j\right ...
- 【BZOJ】【3171】【TJOI2013】循环格
网络流/费用流 最后能走回出发点……说明全部是环= = 而二分图上的环说明什么呢……完备匹配 对于每个点,它都有四个可能的匹配点,且已知它已经(伪)匹配的一个点,那么我们于已知每条(伪)匹配边,我们连 ...
- 【刷题】LOJ 2818 「eJOI2018」循环排序
题目描述 本题译自 eJOI2018 Problem F「Cycle Sort」 给定一个长为 \(n\) 的数列 \(\{a_i\}\) ,你可以多次进行如下操作: 选定 \(k\) 个不同的下标 ...
- *LOJ#2085. 「NOI2016」循环之美
$n \leq 1e9,m \leq 1e9,k \leq 2000$,求$k$进制下$\frac{x}{y}$有多少种不同的纯循环数取值,$1 \leq x \leq n,1 \leq y \leq ...
- LOJ 2085: 洛谷 P1587: bzoj 4652: 「NOI2016」循环之美
题目传送门:LOJ #2085. 两个月之前做的傻题,还是有必要补一下博客. 题意简述: 求分子为不超过 \(n\) 的正整数,分母为不超过 \(m\) 的正整数的所有互不相等的分数中,有多少在 \( ...
- 「NOI2016」循环之美
P1587 [NOI2016]循环之美 题目描述 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 $k$ 进制下,一个数的小数部分是纯循环的,那么它就 ...
- 「NOI2016」循环之美(小性质+min_25筛)
传送门. 题解 感觉这题最难的是第一个结论. x/y首先要互质,然后如果在10进制是纯循环小数,不难想到y不是2.5的倍数就好了. 因为十进制下除以2和5是除得尽的. 必然会多出来的什么东西. 如果是 ...
随机推荐
- 杂项-公司:摩根大通百科-un
ylbtech-杂项-公司:摩根大通百科 摩根大通集团(JPMorgan Chase & Co,NYSE:JPM:),2000年12月由J.P.摩根公司和大通-曼哈顿公司合并而成,是美国主要的 ...
- Oracle 利用执行计划来避免排序操作
在oracle中,利用index来避免排序 SQL) NOT NULL); SQL> CREATE INDEX IND_T_NOSORT_NAME ON T_NOSORT(NAME); SQL& ...
- 为何指针初始化为NULL
指针初始化为NULL,指向NULL指针区(大小64K),如果读取或写入这个地址,会引发内存写保护异常 版权声明:本文为博主原创文章,未经博主允许不得转载.
- Linq语句:三表联查
var db = new DataEntities2(); var sss = ( from c in db.AIRPORT_HELIPORT ...
- SSD知识
不管什么接口的SSD,一般都由以下部分组成:主控,Flash,板,壳,品牌.下面本佬就这些部分一一发帖,仅供娱乐参考,不作任何推荐和偏向,有不同见解请直接发表,有任何错误,请直接指正,不为吵架,只为娱 ...
- re模块练习
1.匹配标签 1 import re 2 ret = re.search('<(?P<tag_name>\w+)>\w+</(?P=tag_name)>','< ...
- Vmware中的centos虚拟机克隆之后没有eth0
克隆虚拟机之后,CentOS没有eth0的解决办法 我们常常需要从一台已经安装完成的虚拟机系统克隆出来一个新系统(克隆时候必须要改变网卡物理地址,这一点无需多说),但是新系统启动之后,会发现系统网络工 ...
- 一个虚拟机网络的XML描述
<?xml version="1.0" encoding="utf-8"?> <VNET> <ID>1</ID> ...
- 【转】request的cache-control和response cache-control不同点
原文地址:http://www.cnblogs.com/lwhkdash/archive/2012/11/04/2748291.html HTTP协议中,关于一些头域的解释很模糊,网上的解释有些甚至是 ...
- PC建立WIFI热点
netsh wlan set hostednetwork ssid=test key =12345678netsh wlan start hostednetwork