最小圆覆盖 [模板] BZOJ 1337&1336
题目描述
给出N个点,让你画一个最小的包含所有点的圆。
输入输出格式
输入格式:
先给出点的个数N,2<=N<=100000,再给出坐标Xi,Yi.(-10000.0<=xi,yi<=10000.0)
输出格式:
输出圆的半径,及圆心的坐标,保留10位小数
输入输出样例
5.0000000000
5.0000000000 5.0000000000
说明
5.00 5.00 5.0
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 400005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-11
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ struct node {
double x, y;
}pt[maxn]; node o;
int n;
double r; double dis(node a, node b) {
return sqrt((a.x - b.x)*(a.x - b.x) + (a.y - b.y)*(a.y - b.y));
} void dt(node p1, node p2, node p3) {
double a, b, c, d, e, f;
a = p2.y - p1.y;
b = p3.y - p1.y;
c = p2.x - p1.x;
d = p3.x - p1.x;
f = p3.x*p3.x + p3.y*p3.y - p1.x*p1.x - p1.y*p1.y;
e = p2.x*p2.x + p2.y*p2.y - p1.x*p1.x - p1.y*p1.y;
o.x = (a*f - b * e) / (2 * a*d - 2 * b*c);
o.y = (d*e - c * f) / (2 * a*d - 2 * b*c);
r = dis(o, p1);
} int main() {
// ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
rdint(n);
for (int i = 1; i <= n; i++) {
rdlf(pt[i].x); rdlf(pt[i].y);
}
random_shuffle(pt + 1, pt + 1 + n);
o = pt[1]; r = 0;
for (int i = 2; i <= n; i++) {
if (dis(pt[i], o) > r + eps) {
o = pt[i]; r = 0;
for (int j = 1; j <= i - 1; j++) {
if (dis(o, pt[j]) > r + eps) {
o.x = (pt[i].x + pt[j].x) / 2.0;
o.y = (pt[i].y + pt[j].y) / 2.0;
r = dis(o, pt[j]);
for (int k = 1; k <= j - 1; k++) {
if (dis(o, pt[k]) > r + eps) {
dt(pt[i], pt[j], pt[k]);
}
}
}
}
}
}
printf("%.10lf\n%.10lf %.10lf", 1.0*r, o.x, o.y);
return 0;
}
最小圆覆盖 [模板] BZOJ 1337&1336的更多相关文章
- AHOI2012 信号塔 | 最小圆覆盖模板
题目链接:戳我 最小圆覆盖. 1.枚举第一个点,考虑当前圆是否包含了这个点,如果没有,则把圆变成以这个点为圆心,半径为0的圆. 2.枚举第二个点,考虑圆是否包含了这个点,如果没有,则把圆变成以这两个点 ...
- BZOJ1336 Balkan2002 Alien最小圆覆盖 【随机增量法】*
BZOJ1336 Balkan2002 Alien最小圆覆盖 Description 给出N个点,让你画一个最小的包含所有点的圆. Input 先给出点的个数N,2<=N<=100000, ...
- BZOJ2823 [AHOI2012]信号塔 【最小圆覆盖】
题目链接 BZOJ2823 题解 最小圆覆盖模板 都懒得再写一次 #include<iostream> #include<cstdio> #include<cmath&g ...
- Bzoj 1336&1337 Alien最小圆覆盖
1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 Sec Memory Limit: 162 MBSec Special Judge Submit: 1473 ...
- [BZOJ 1336] [Balkan2002] Alien最小圆覆盖 【随机增量法】
题目链接:BZOJ - 1336 题目分析 最小圆覆盖有一个算法叫做随机增量法,看起来复杂度像是 O(n^3) ,但是可以证明其实平均是 O(n) 的,至于为什么我不知道= = 为什么是随机呢?因为算 ...
- bzoj 1336 最小圆覆盖
最小圆覆盖 问题:给定平面上的一个点集,求半径最小的一个圆,使得点集中的点都在其内部或上面. 随机增量算法: 定义:点集A的最小圆覆盖是Circle(A) 定理:如果Circle(A)=C1,且a不被 ...
- 【BZOJ】1336: [Balkan2002]Alien最小圆覆盖
题解 我们先把所有点random_shuffle一下 然后对前i - 1个点计算一个最小圆覆盖,然后第i个点如果不在这个圆里,那么我们把这个点当成一个新的点,作为圆心,半径为0 从头枚举1 - i - ...
- bzoj2823: [AHOI2012]信号塔&&1336: [Balkan2002]Alien最小圆覆盖&&1337: 最小圆覆盖
首先我写了个凸包就溜了 这是最小圆覆盖问题,今晚学了一下 先随机化点,一个个加入 假设当前圆心为o,半径为r,加入的点为i 若i不在圆里面,令圆心为i,半径为0 再重新从1~i-1不停找j不在圆里面, ...
- 【BZOJ-1336&1337】Alie最小圆覆盖 最小圆覆盖(随机增量法)
1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 1573 ...
随机推荐
- ansible命令详解
查看ansible版本 import ansible print(ansible.__version__) 命令参数 -m:要执行的模块,默认为command -a:模块的参数 -u:ssh连接的用户 ...
- 【280】◀▶ ArcPy 常用工具说明
目录: 一.相关技巧 二.工具说明 一.相关技巧 技巧1:将工具从工具箱拖拽到 Python 窗体中自动会生成相应的函数,于是可以快速定位函数名称! 技巧2:将通过工具箱实现的操作结果拖拽到 Pyth ...
- Write your first jQuery plugin
本文固定链接: http://www.jquery.org.cn/archives/380 一般来说,jQuery插件的开发分为两种:一种是挂在jQuery命名空间下的全局函数,也可称为静态方法:另一 ...
- 对get post请求的封装
HttpUtil.java package com.dhc.task.wx.util; import java.io.BufferedReader; import java.io.IOExceptio ...
- redis实现发布订阅
订阅者 #!/usr/bin/env python # -*- coding:utf-8 -*- import redis r = redis.Redis(host='192.168.11.119') ...
- jQuery+css模拟下拉框模糊搜索的实现
html: @*输入框*@ <div> <input type="text" style="width: 85%; height: 34px;" ...
- Python学习笔记_我的参考网址
Python学习笔记, 下面记录网上搜到的可参考的网址: 一.关于Tkinter 1.Python3中tkinter模块使用方法详解 https://blog.csdn.net/Fighting_Bo ...
- The 'Microsoft Jet OLEDB 4.0 Provider' is not registered on the local machine
在一台Win7 64位的操纵系统上部署的C# Web系统,操作Excel,批量导入数据,报错,提示错误信息: The ‘Microsoft Jet OLEDB 4.0 Provider' is not ...
- lucene 第二天
Lucene/Solr 第二天 1. 课程计划 Lucene的Field Lucene的索引库维护 lucene的查询 a) Query子对象 b) QueryParser Lucene相关度排序 ...
- Linux内核的特征
Linux内核的特征 Linux是个人计算机和工作站上的Unix类操作系统.但是,它绝不是简化的Unix.相反,Linux是强有力和具有创新意义的Unix类操作系统.它不仅继承了Unix的特征,而且在 ...