某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路? 

Input测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。 
注意:两个城市之间可以有多条道路相通,也就是说 
3 3 
1 2 
1 2 
2 1 
这种输入也是合法的 
当N为0时,输入结束,该用例不被处理。 
Output对每个测试用例,在1行里输出最少还需要建设的道路数目。 
Sample Input

4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0

Sample Output

1
0
2
998
个人做题心得:其实最后一个999,998就已经告诉我们了无论怎么通路,只要N个乡镇一定要有n-1条道路,这样子我们只要找出不重复的就好了,
我用的是bfs这样就能把在一起连通的全部算起,不要求管其中路的多少,不过n个乡镇要建立标志循坏调用,时间还是比较慢的。而并查集则有树的概念,
将在一起的数据全部弄成树的模型,这样的话就能够简单明了的将他们转化,最后只要得出谁没在这个体系中就加上去就好了。
我的bfs题解
 #include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#include<algorithm>
using namespace std;
int n,m;
int sum;
int mapa[][];
int book[];
void bfs(int x)
{
queue<int >s;
book[x]=;
s.push(x);
while(!s.empty())
{
int t=s.front();
for(int i=;i<=n;i++)
{
if(book[i]==&&mapa[t][i]==)
{
sum++;
book[i]=;
s.push(i);
}
}
s.pop();
}
}
int main()
{ while(cin>>n)
{
if(n==) break;
scanf("%d",&m);
sum=;
memset(mapa,,sizeof(mapa));
memset(book,,sizeof(book));
int x,y;
int flag=;
for(int i=;i<=m;i++)
{ scanf("%d%d",&x,&y);
if(flag==) flag=x;
if(mapa[x][y]==)
mapa[x][y]=mapa[y][x]=; }
bfs(flag);
for(int i=;i<=n;i++)
{
if(book[i]==)
bfs(i); } if(sum>=n-) printf("0\n");
else printf("%d\n",n--sum);
} return ;
}
并查集
1 #include<stdio.h>
const int MAXN=;
int F[MAXN];
int find(int t)
{
if(F[t]==-) return t;
return F[t]=find(F[t]);
}
void bing(int a,int b)
{
int t1=find(a);
int t2=find(b);
if(t1!=t2) F[t1]=t2;
}
int main()
{
int n,m; while(scanf("%d",&n),n)
{
scanf("%d",&m);
for(int i=;i<=n;i++) F[i]=-;
int a,b;
while(m--)
{
scanf("%d%d",&a,&b);
bing(a,b);
}
int res=;
for(int i=;i<=n;i++)
if(F[i]==-) res++;
printf("%d\n",res-);
}
return ;
}
												

畅通工程(自己写的BFS,但后面想了下并查集更好更快)的更多相关文章

  1. hdu 1233(还是畅通project)(prime算法,克鲁斯卡尔算法)(并查集,最小生成树)

    还是畅通project Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tota ...

  2. 并查集入门(hdu1232“畅通工程”)

    在学习并查集之前,首先需要明白基本的并查集可以完成的功能.并查集主要是用于处理不相交集合的合并问题.它是一种基础算法,在离散数学中,可以利用并查集求一个图的连通分支,利用其这个特性可以为我们解决一系列 ...

  3. ACM: HDU 1874 畅通工程续-Dijkstra算法

    HDU 1874 畅通工程续 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Desc ...

  4. HDU-1233 还是畅通工程 (prim 算法求最小生成树)

    prim 算法求最小生成树 还是畅通工程 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  5. HDU 畅通工程系列

    畅通工程系列都是比较裸的最小生成树问题,且是中文题目,不赘述了. 1.HDU 1863 畅通工程 题意:一个省有很多村庄,其中一些之间是可以建公路的,每条公路都需要不同的代价,问代价最小的情况下将所有 ...

  6. HDU 1879 继续畅通工程(最小生成树)

    省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可).现得到城镇道路统计表,表中列出了任意两城镇间修建道路的费用,以及该道路是否已经 ...

  7. PTA 7-50 畅通工程之局部最小花费问题(最小生成树Kruskal)

    某地区经过对城镇交通状况的调查,得到现有城镇间快速道路的统计数据,并提出“畅通工程”的目标:使整个地区任何两个城镇间都可以实现快速交通(但不一定有直接的快速道路相连,只要互相间接通过快速路可达即可). ...

  8. hdu 1232:畅通工程(数据结构,树,并查集)

    畅通工程 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  9. hdu 1863 畅通工程 (并查集+最小生成树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1863 畅通工程 Time Limit: 1000/1000 MS (Java/Others)    M ...

随机推荐

  1. Linux基本命令 文件处理命令

    概述 命令格式:命令 [-选项] [参数] 例如:ls -la /etc 说明:1.个别命令使用不遵守此格式.2. 当有多个选项时,可以写在一起. ls 命令示例 文件打印命令cat.tac.more ...

  2. 如何在windows10环境下安装Pytorch-0.4.1版本

    开始是按照教程:https://blog.csdn.net/xiangxianghehe/article/details/80103095 安装了Pytorch0.4.0,但是安装后发现在import ...

  3. mysql中的一些操作

    查询mysql中事务提交的情况: show variables like '%commit%'; 可以查看当前autocommit值 在mysql数据库中它的默认值是"on"代表自 ...

  4. MongoDB快速入门(二)- 数据库

    创建数据库 MongoDB use DATABASE_NAME 用于创建数据库.该命令如果数据库不存在,将创建一个新的数据库, 否则将返回现有的数据库. 语法 use DATABASE语句的基本语法如 ...

  5. C语言一个细节地方的说明【防止使用不当而出错】

    1.运行如下的代码: #include <stdio.h> #include <string.h> int main() { int a; a=1; int s[4]; mem ...

  6. 利用PushbackReader读取文件中某个字符串之前的内容

    package File; import java.io.FileReader; import java.io.IOException; import java.io.PushbackReader; ...

  7. list添加map问题

    结论: list添加添加的是map的地址 List<Map<String, Object>> list = new ArrayList<>(); Map<St ...

  8. 关于UML方法学图中类之间的关系:依赖,泛化,关联

    类与类图 1) 类(Class)封装了数据和行为,是面向对象的重要组成部分,它是具有相同属性.操作.关系的对象集合的总称. 2) 在系统中,每个类具有一定的职责,职责指的是类所担任的任务,即类要完成什 ...

  9. html5 pc端参考网址

    http://huodong.baidu.com/zhuanpan/?SEM&PC&refer=107255

  10. Linux命令之sort用法

    linux之sort用法   sort命令是帮我们依据不同的数据类型进行排序,其语法及常用参数格式: sort [-bcfMnrtk][源文件][-o 输出文件] 补充说明:sort可针对文本文件的内 ...