stl_algobase.h
stl_algobase.h
// Filename: stl_algobase.h // Comment By: 凝霜
// E-mail: mdl2009@vip.qq.com
// Blog: http://blog.csdn.net/mdl13412 // 这个文件中定义的都是一些最常用的算法, 我仅仅给出一个思路,
// 不进行详尽讲解, 具体算法请参考算法书籍, 推荐《算法导论》
// 另外, 对于基础薄弱的, 推荐《大话数据结构》, 此书我读了一下
// 试读章节, 适合初学者学习 /*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/ /* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/ #ifndef __SGI_STL_INTERNAL_ALGOBASE_H
#define __SGI_STL_INTERNAL_ALGOBASE_H #ifndef __STL_CONFIG_H
#include <stl_config.h>
#endif
#ifndef __SGI_STL_INTERNAL_RELOPS
#include <stl_relops.h>
#endif
#ifndef __SGI_STL_INTERNAL_PAIR_H
#include <stl_pair.h>
#endif
#ifndef __TYPE_TRAITS_H_
#include <type_traits.h>
#endif #include <string.h>
#include <limits.h>
#include <stdlib.h>
#include <stddef.h>
#include <new.h>
#include <iostream.h> #ifndef __SGI_STL_INTERNAL_ITERATOR_H
#include <stl_iterator.h>
#endif __STL_BEGIN_NAMESPACE // 第三个参数为什么为指针参见<stl_iterator.h>
template <class ForwardIterator1, class ForwardIterator2, class T>
inline void __iter_swap(ForwardIterator1 a, ForwardIterator2 b, T*)
{
// 这里交换的其实是内部对象
T tmp = *a;
*a = *b;
*b = tmp;
} template <class ForwardIterator1, class ForwardIterator2>
inline void iter_swap(ForwardIterator1 a, ForwardIterator2 b)
{
// 型别以第一个为准
__iter_swap(a, b, value_type(a));
} // 进行交换操作, 使用的是operator =()
template <class T>
inline void swap(T& a, T& b)
{
T tmp = a;
a = b;
b = tmp;
} #ifndef __BORLANDC__ #undef min
#undef max // max和min非常简单了, 由于返回的是引用, 因此可以嵌套使用
template <class T>
inline const T& min(const T& a, const T& b)
{
return b < a ? b : a;
} template <class T>
inline const T& max(const T& a, const T& b)
{
return a < b ? b : a;
} #endif /* __BORLANDC__ */ template <class T, class Compare>
inline const T& min(const T& a, const T& b, Compare comp)
{
return comp(b, a) ? b : a;
} template <class T, class Compare>
inline const T& max(const T& a, const T& b, Compare comp)
{
return comp(a, b) ? b : a;
} // 这是不支持随机访问的情况
template <class InputIterator, class OutputIterator>
inline OutputIterator __copy(InputIterator first, InputIterator last,
OutputIterator result, input_iterator_tag)
{
// first != last导致要进行迭代器的比较, 效率低
for ( ; first != last; ++result, ++first)
*result = *first;
return result;
} template <class RandomAccessIterator, class OutputIterator, class Distance>
inline OutputIterator
__copy_d(RandomAccessIterator first, RandomAccessIterator last,
OutputIterator result, Distance*)
{
// 不进行迭代器间的比较, 直接指定循环次数, 高效
for (Distance n = last - first; n > ; --n, ++result, ++first)
*result = *first;
return result;
} // 这是支持随机访问的情况
template <class RandomAccessIterator, class OutputIterator>
inline OutputIterator
__copy(RandomAccessIterator first, RandomAccessIterator last,
OutputIterator result, random_access_iterator_tag)
{
return __copy_d(first, last, result, distance_type(first));
} template <class InputIterator, class OutputIterator>
struct __copy_dispatch
{
// 这里是一个仿函数. 再次派发
OutputIterator operator()(InputIterator first, InputIterator last,
OutputIterator result) {
return __copy(first, last, result, iterator_category(first));
}
}; // 提供兼容
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION // 可以直接移动, 不需要额外操作
template <class T>
inline T* __copy_t(const T* first, const T* last, T* result, __true_type)
{
memmove(result, first, sizeof(T) * (last - first));
return result + (last - first);
} // 需要进行一些处理, 保证对象复制的正确性
template <class T>
inline T* __copy_t(const T* first, const T* last, T* result, __false_type)
{
return __copy_d(first, last, result, (ptrdiff_t*) );
} // 对指针提供特化
template <class T>
struct __copy_dispatch<T*, T*>
{
T* operator()(T* first, T* last, T* result)
{
// 判断其内部是否具有trivial_assignment_operator, 以进行派发
typedef typename __type_traits<T>::has_trivial_assignment_operator t;
return __copy_t(first, last, result, t());
}
}; template <class T>
struct __copy_dispatch<const T*, T*>
{
T* operator()(const T* first, const T* last, T* result) {
typedef typename __type_traits<T>::has_trivial_assignment_operator t;
return __copy_t(first, last, result, t());
}
}; #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ // 将[first, last)拷贝到result处
template <class InputIterator, class OutputIterator>
inline OutputIterator copy(InputIterator first, InputIterator last,
OutputIterator result)
{
// 此处进行函数派发操作
return __copy_dispatch<InputIterator,OutputIterator>()(first, last, result);
} // 针对char字符串的特化, 效率至上, C++的设计理念
inline char* copy(const char* first, const char* last, char* result)
{
memmove(result, first, last - first);
return result + (last - first);
} // 针对wchar_t字符串的特化, 效率至上, C++的设计理念
inline wchar_t* copy(const wchar_t* first, const wchar_t* last,
wchar_t* result) {
memmove(result, first, sizeof(wchar_t) * (last - first));
return result + (last - first);
} template <class BidirectionalIterator1, class BidirectionalIterator2>
inline BidirectionalIterator2 __copy_backward(BidirectionalIterator1 first,
BidirectionalIterator1 last,
BidirectionalIterator2 result)
{
while (first != last) *--result = *--last;
return result;
} template <class BidirectionalIterator1, class BidirectionalIterator2>
struct __copy_backward_dispatch
{
BidirectionalIterator2 operator()(BidirectionalIterator1 first,
BidirectionalIterator1 last,
BidirectionalIterator2 result)
{
return __copy_backward(first, last, result);
}
}; #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION template <class T>
inline T* __copy_backward_t(const T* first, const T* last, T* result,
__true_type)
{
const ptrdiff_t N = last - first;
memmove(result - N, first, sizeof(T) * N);
return result - N;
} template <class T>
inline T* __copy_backward_t(const T* first, const T* last, T* result,
__false_type)
{
return __copy_backward(first, last, result);
} template <class T>
struct __copy_backward_dispatch<T*, T*>
{
T* operator()(T* first, T* last, T* result)
{
typedef typename __type_traits<T>::has_trivial_assignment_operator t;
return __copy_backward_t(first, last, result, t());
}
}; template <class T>
struct __copy_backward_dispatch<const T*, T*>
{
T* operator()(const T* first, const T* last, T* result)
{
typedef typename __type_traits<T>::has_trivial_assignment_operator t;
return __copy_backward_t(first, last, result, t());
}
}; #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ // 将[first, last)的元素反向拷贝到(..., last)处, 其机制和copy非常接近, 不做说明
template <class BidirectionalIterator1, class BidirectionalIterator2>
inline BidirectionalIterator2 copy_backward(BidirectionalIterator1 first,
BidirectionalIterator1 last,
BidirectionalIterator2 result)
{
return __copy_backward_dispatch<BidirectionalIterator1,
BidirectionalIterator2>()(first, last,
result);
} template <class InputIterator, class Size, class OutputIterator>
pair<InputIterator, OutputIterator> __copy_n(InputIterator first, Size count,
OutputIterator result,
input_iterator_tag)
{
for ( ; count > ; --count, ++first, ++result)
*result = *first;
return pair<InputIterator, OutputIterator>(first, result);
} template <class RandomAccessIterator, class Size, class OutputIterator>
inline pair<RandomAccessIterator, OutputIterator>
__copy_n(RandomAccessIterator first, Size count,
OutputIterator result,
random_access_iterator_tag)
{
// 使用copy()以选择最高效的拷贝算法
RandomAccessIterator last = first + count;
return pair<RandomAccessIterator, OutputIterator>(last,
copy(first, last, result));
} // 从first拷贝n个值到result处
template <class InputIterator, class Size, class OutputIterator>
inline pair<InputIterator, OutputIterator>
copy_n(InputIterator first, Size count,
OutputIterator result)
{
// 进行函数派发, 选咋高效版本
return __copy_n(first, count, result, iterator_category(first));
} // 使用value填充[first, last)区间
template <class ForwardIterator, class T>
void fill(ForwardIterator first, ForwardIterator last, const T& value)
{
for ( ; first != last; ++first)
*first = value; // 调用的是operator =(), 这个要特别注意
} // 用value填充[first, first + n)的区间
// 为了防止越界, 可以使用下面实例的技巧
// vector<int> vec();
// for (int i = 0; i < 10; ++i)
// vec.push_back(i);
// fill_n(inserter(iv, iv.begin()), 100, 10); // 这就可以使容器动态扩展
template <class OutputIterator, class Size, class T>
OutputIterator fill_n(OutputIterator first, Size n, const T& value)
{
for ( ; n > ; --n, ++first)
*first = value;
return first;
} // 找到两个序列第一个失配的地方, 结果以pair返回
template <class InputIterator1, class InputIterator2>
pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1,
InputIterator1 last1,
InputIterator2 first2)
{
// 遍历区间, 寻找失配点
while (first1 != last1 && *first1 == *first2) {
++first1;
++first2;
}
return pair<InputIterator1, InputIterator2>(first1, first2);
} // 提供用户自定义的二元判别式, 其余同上
template <class InputIterator1, class InputIterator2, class BinaryPredicate>
pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1,
InputIterator1 last1,
InputIterator2 first2,
BinaryPredicate binary_pred)
{
while (first1 != last1 && binary_pred(*first1, *first2)) {
++first1;
++first2;
}
return pair<InputIterator1, InputIterator2>(first1, first2);
} // 如果序列在[first, last)内相等, 则返回true, 如果第二个序列有多余的元素,
// 则不进行比较, 直接忽略. 如果第二个序列元素不足, 会导致未定义行为
template <class InputIterator1, class InputIterator2>
inline bool equal(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2)
{
for ( ; first1 != last1; ++first1, ++first2)
if (*first1 != *first2) // 只要有一个不相等就判定为false
return false;
return true;
} // 进行比较的操作改为用户指定的二元判别式, 其余同上
template <class InputIterator1, class InputIterator2, class BinaryPredicate>
inline bool equal(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, BinaryPredicate binary_pred)
{
for ( ; first1 != last1; ++first1, ++first2)
if (!binary_pred(*first1, *first2))
return false;
return true;
} // 字典序比较, 非常类似字符串的比较
// 具体比较方式参见STL文档, 另外strcmp()也可以参考
template <class InputIterator1, class InputIterator2>
bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2)
{
for ( ; first1 != last1 && first2 != last2; ++first1, ++first2) {
if (*first1 < *first2)
return true;
if (*first2 < *first1)
return false;
}
return first1 == last1 && first2 != last2;
} // 二元判别式自己指定, 其余同上
template <class InputIterator1, class InputIterator2, class Compare>
bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
Compare comp) {
for ( ; first1 != last1 && first2 != last2; ++first1, ++first2)
{
if (comp(*first1, *first2))
return true;
if (comp(*first2, *first1))
return false;
}
return first1 == last1 && first2 != last2;
} // 针对字符串的特化, 效率至上
inline bool
lexicographical_compare(const unsigned char* first1,
const unsigned char* last1,
const unsigned char* first2,
const unsigned char* last2)
{
const size_t len1 = last1 - first1;
const size_t len2 = last2 - first2;
const int result = memcmp(first1, first2, min(len1, len2));
return result != ? result < : len1 < len2;
} // 针对字符串的特化, 效率至上
inline bool lexicographical_compare(const char* first1, const char* last1,
const char* first2, const char* last2)
{
#if CHAR_MAX == SCHAR_MAX
return lexicographical_compare((const signed char*) first1,
(const signed char*) last1,
(const signed char*) first2,
(const signed char*) last2);
#else
return lexicographical_compare((const unsigned char*) first1,
(const unsigned char*) last1,
(const unsigned char*) first2,
(const unsigned char*) last2);
#endif
} // 一句话概括, 这个是strcmp()的泛化版本
template <class InputIterator1, class InputIterator2>
int lexicographical_compare_3way(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2)
{
while (first1 != last1 && first2 != last2) {
if (*first1 < *first2) return -;
if (*first2 < *first1) return ;
++first1; ++first2;
}
if (first2 == last2) {
return !(first1 == last1);
} else {
return -;
}
} // 特换版本, 效率决定一切
inline int
lexicographical_compare_3way(const unsigned char* first1,
const unsigned char* last1,
const unsigned char* first2,
const unsigned char* last2)
{
const ptrdiff_t len1 = last1 - first1;
const ptrdiff_t len2 = last2 - first2;
const int result = memcmp(first1, first2, min(len1, len2));
return result != ? result : (len1 == len2 ? : (len1 < len2 ? - : ));
} inline int lexicographical_compare_3way(const char* first1, const char* last1,
const char* first2, const char* last2)
{
#if CHAR_MAX == SCHAR_MAX
return lexicographical_compare_3way(
(const signed char*) first1,
(const signed char*) last1,
(const signed char*) first2,
(const signed char*) last2);
#else
return lexicographical_compare_3way((const unsigned char*) first1,
(const unsigned char*) last1,
(const unsigned char*) first2,
(const unsigned char*) last2);
#endif
} __STL_END_NAMESPACE #endif /* __SGI_STL_INTERNAL_ALGOBASE_H */ // Local Variables:
// mode:C++
// End:
stl_algobase.h的更多相关文章
- STL源代码剖析——基本算法stl_algobase.h
前言 在STL中.算法是常常被使用的,算法在整个STL中起到很关键的数据.本节介绍的是一些基本算法,包括equal.fill.fill_n,iter_swap.lexicographical_comp ...
- STL---基本算法---<stl_algobase.h>概述
通过一个实例来说明这些算法的接口使用: #include <iostream> #include <algorithm> #include <functional> ...
- STL源代码剖析 容器 stl_hashtable.h
本文为senlie原创.转载请保留此地址:http://blog.csdn.net/zhengsenlie hashtable ------------------------------------ ...
- stl_vector.h
stl_vector.h // Filename: stl_vector.h // Comment By: 凝霜 // E-mail: mdl2009@vip.qq.com // Blog: http ...
- stl_deque.h
stl_deque.h // Filename: stl_deque.h // Comment By: 凝霜 // E-mail: mdl2009@vip.qq.com // Blog: http:/ ...
- stl_tree.h
stl_tree.h G++ ,cygnus\cygwin-b20\include\g++\stl_tree.h 完整列表 /* * * Copyright (c) 1996,1997 * Silic ...
- stl_hashtable.h
stl_hashtable.h // Filename: stl_hashtable.h // Comment By: 凝霜 // E-mail: mdl2009@vip.qq.com // Blog ...
- STL algorithm源代码:stl_algo.h
<span style="font-size:18px;">// Algorithm implementation -*- C++ -*- // Copyright ( ...
- construction const parameter问题 构造函数const引用参数问题
工程在window下编译没有任何问题, 但是在linux(CentOS6)下编译就老是报错 C++ 编译器已升级到最新版 6.1.0 错误如下: In file included /bits/stl_ ...
随机推荐
- vim常规操作
原文地址 三种模式 一般模式:可以进行复制.粘贴和删除等操作 编辑模式:按i或a进入编辑模式,按Esc回到一般模式 命令模式:按/或?或:进入命令模式,按Esc回到一般模式 移动操作 h j k l: ...
- hadoop linux 杂记
切换到root su 修改sudo sudo + 命令 --> root权限 + 命令 su root vim /etc/sudoers ...
- $python正则表达式系列(2)——re模块常用函数
本文主要介绍正则re模块的常用函数. 1. 编译正则 import re p = re.compile(r'ab*') print '[Output]' print type(p) print p p ...
- fastReport 绑定DataBand数据源后还是打印出一条数据
升级了fastreport到v2018后,打印出现问题,datasource是多条数据,可打印出来始终只显示第一条 DataBand dataBand = report.FindObject(&quo ...
- 多个网络请求成功返回再执行另外任务的思路分析(iOS)
前言 今天我们来讨论一个经常出现的需求场景,也是一个老话题.在开发中我们往往会遇到需要进行多个网络请求,并且需要多个网络请求成功返回后再做其他事的场景.比如同一个界面显示的内容需要用到两个网络接口,而 ...
- winter 2018 02 01 关于模运算的一道题
题目:给出一个正整数n,问是否存在x,满足条件2^x mod n=1,如果存在,求出x的最小值. 分析:1.若给出的n是1,则肯定不存在这样的x; 2.若给出的是偶数,2的次幂取余一个偶数得到 ...
- 轻量级的Java 开发框架 Spring
Spring是一个开源框架,Spring是于2003 年兴起的一个轻量级的Java 开发框架,由Rod Johnson 在其著作Expert One-On-One J2EE Development a ...
- dreamweaver8快捷键
替换Ctrl+H 处理表格 选择表格(光标在表格中) Ctrl+A 移 动到下一单元格Tab 移 动到上一单元格Shift+Tab 插入行(在当前行之前)Ctrl+M 在表格末插入一行 在最后一个单元 ...
- Email-Ext Plugin install ------ Jenkins Plugins
一.基本信息 1. Email-Ext Plugin功能简介 支持Jenkins邮件发送时,自定义邮件内容功能.详情可以查看jenkins的wiki : https://wiki.jenkins-ci ...
- DanceLink
DanceLink是一个可以解决精确覆盖和重复覆盖的搜索算法 重复覆盖就是在精确覆盖的remove等处做改变 都是十字循环链表 精确覆盖 给出一个01矩阵 要求选择几行 使每一列都有且仅有一个1 在求 ...