Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 400  Solved: 272
[Submit][Status][Discuss]

Description

张老师根据自己工作的需要,设计了一种特殊的二叉搜索树。他把这种二叉树起名为zh_tree,对于具有n个结点的zh_tree,其中序遍历恰好为(1,2,3,…,n),其中数字1,2,3,…,n 是每个结点的编号。n个结点恰好对应于一组学术论文中出现的n个不同的单词。第j个单词在该组论文中出现的次数记为dj,例如,d2=10表示第2个结点所对应的单词在该组论文中出现了10次。设该组论文中出现的单词总数为S,显然,S=d1+d2+…+dn。记fj=dj/S为第j个单词在该组论文中出现的概率(频率)。 张老师把根结点深度规定为0,如果第j个结点的深度为r,则访问该结点的代价hj为hj=k(r+1)+c,其中k,c为已知的不超过100的正常数。 则zh_tree是满足以下条件的一棵二叉树:它使 h1f1+h2f2+…+hnfn 达到最小。我们称上式为访问zh_tree的平均代价。 请你根据已知数据为张老师设计一棵zh_tree。

Input

第1行:3个用空格隔开的正数: n k c 其中n<30,为整数,k,c为不超过100的正实数。 第2行:n个用空格隔开的正整数,为每个单词出现的次数(次数<200)。

Output

第1行:(5分)一个正实数,保留3位小数,为访问Zh_tree的最小平均代价。 第2行:(5分)n个用空格隔开的整数,为该树的前序遍历。一般地,作为最优解的前序遍历不一定唯一,只输出一个解。

Sample Input

4 2 3.5
20 30 50 20

Sample Output

7.000

HINT

Source

并不是很懂题目是什么意思。。

网上的题解也没有说这题的思路,只是给了一个很脑残的dp方程。。

总感觉这题可以直接贪心搞过去。

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int MAXN = 1e5 + , INF = 1e9 + ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int N;
double K, C, f[][];
int a[MAXN];
double dp(int l, int r) {
if(l > r) return ;
if(f[l][r] != INF) return f[l][r];
for(int i = l; i <= r; i++)
f[l][r] = min(f[l][r], dp(l, i - ) + dp(i + , r) + (a[i] - a[i - ]) * C / a[N] );
return f[l][r] = f[l][r]+ K / a[N] * (a[r] - a[l - ]);
}
main() {
#ifdef WIN32
freopen("a.in", "r", stdin);
#endif
scanf("%d %lf %lf", &N, &K, &C);
for(int i = ; i <= N; i++) a[i] = a[i - ] + read();
for(int i = ; i <= N; i++)
for(int j = ; j <= N; j++)
f[i][j] = INF;
printf("%.3lf", dp(, N));
}

BZOj1261: [SCOI2006]zh_tree(dp)的更多相关文章

  1. bzoj千题计划184:bzoj1261: [SCOI2006]zh_tree

    http://www.lydsy.com/JudgeOnline/problem.php?id=1261 dp[l][r][dep]  区间[l,r]内的节点,根在dep层的最小代价 枚举根i,dp[ ...

  2. BZOJ1261: [SCOI2006]zh_tree

    Description 张老师根据自己工作的需要,设计了一种特殊的二叉搜索树.他把这种二叉树起名为zh_tree,对于具有n个结点的zh_tree,其中序遍历恰好为(1,2,3,-,n),其中数字1, ...

  3. BZOJ 1261: [SCOI2006]zh_tree( 区间dp )

    dp(l, r)表示[l, r]这段作为一棵树的最小访问代价. 对于dp(l, r), 我们枚举它的根x, 则dp(l, r) = min(dp(l, x-1)+dp(x+1, r)+C*fx) + ...

  4. 「 洛谷 」P4539 [SCOI2006]zh_tree

    小兔的话 推荐 小兔的CSDN [SCOI2006]zh_tree 题目限制 内存限制:250.00MB 时间限制:1.00s 标准输入输出 题目知识点 思维 动态规划 \(dp\) 区间\(dp\) ...

  5. 【DP】【P4539】 [SCOI2006]zh_tree

    Description 张老师根据自己工作的需要,设计了一种特殊的二叉搜索树. 他把这种二叉树起名为zh_tree,对于具有n个结点的zh_tree,其中序遍历恰好为(1,2,3,-,n),其中数字1 ...

  6. 区间DP复习

    区间DP复习 (难度排序:(A,B),(F,G,E,D,H,I,K),(C),(J,L)) 这是一个基本全在bzoj上的复习专题 没有什么可以说的,都是一些基本的dp思想 A [BZOJ1996] [ ...

  7. Noip前的大抱佛脚----赛前任务

    赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...

  8. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  9. dp专练

    dp练习. codevs 1048 石子归并 区间dp #include<cstdio> #include<algorithm> #include<cstring> ...

随机推荐

  1. 设置cssrem,设置emmet

    1.文件->首选项->设置 2.搜索cssrem-> 点击设置:"cssrem.rootFontSize": 16, 4.emmet

  2. .NET开源工作流RoadFlow-表单设计-隐藏域

    隐藏域即<input type="hidden" value=""/>标签:

  3. Write a makefile to compile *.c and link to executable target

    https://wenku.baidu.com/view/b1ec946027d3240c8447ef9a.html GNU+make中文手册V3.8 <=========From Docs== ...

  4. solidity语言3

    #函数类型(function type) function (<parameter types>) {internal|external(public)} [pure|constant|v ...

  5. Hive的运算和函数大全

    hive 常用运算 测试各种内置函数的快捷方法: 创建一个 dual 表 create table dual(id string); load 一个文件(只有一行内容:内容为一个空格)到 dual 表 ...

  6. 将CSV文件中的数据导入到SQL Server 数据库中

    导入数据时,需要注意 CSV 文件中的数据是否包含逗号以及双引号,存在时,导入会失败 选择数据库 -> 右键 -> 任务 -> 导入数据 ,然后根据弹出的导入导出向导(如下图)中的提 ...

  7. ORACLE_FUNCTION

    FUNCTION: DEFINE:函数一般用于计算和返回一个值,可以将经常需要使用的计算或功能写成一个函数. 1.basic syntax create [or replace] function f ...

  8. Linux下实现免密码登录

    1.Linux下生成密钥 ssh-keygen的命令手册,通过”man ssh-keygen“命令: 通过命令”ssh-keygen -t rsa“ 生成之后会在用户的根目录生成一个 “.ssh”的文 ...

  9. 查看锁定的session信息脚本

    查看当前被阻塞的对象和锁信息SELECT DISTINCT       s1.inst_id BlockingInst,       s1.sid BlockingSid,       s1.seri ...

  10. python入门23 pymssql模块(python连接sql server增删改数据 )

    增删改数据必须connect.commit()才会生效 回滚函数 connect.rollback() 连接数据库 ''' dinghanhua sql server增删改 ''' import py ...