Xiaoming has just come up with a new way for encryption, by calculating the key from a publicly viewable number in the following way: 
Let the public key N = A B, where 1 <= A, B <= 1000000, and a 0, a 1, a 2, …, a k-1 be the factors of N, then the private key M is calculated by summing the cube of number of factors of all ais. For example, if A is 2 and B is 3, then N = A B = 8, a 0 = 1, a 1 = 2, a 2 = 4, a 3 = 8, so the value of M is 1 + 8 + 27 + 64 = 100. 
However, contrary to what Xiaoming believes, this encryption scheme is extremely vulnerable. Can you write a program to prove it?

Input

There are multiple test cases in the input file. Each test case starts with two integers A, and B. (1 <= A, B <= 1000000). Input ends with End-of-File. 
Note: There are about 50000 test cases in the input file. Please optimize your algorithm to ensure that it can finish within the given time limit.

Output

For each test case, output the value of M (mod 10007) in the format as indicated in the sample output.

Sample Input

2 2
1 1
4 7 
 
Sample Output

Case 1: 36
Case 2: 1
Case 3: 4393 
 
这个题的题意就是求n=a的b次方,数n的各个质因数的立方和;题目给出的a,b范围是100万,所以就要采取特殊的办法了;

这个:质数的N次方会有N+1个因子,大家知道吧(为什么呢,自己慢慢体会);然后这个n就可以分解为多个质数的次方的

乘积;比如f(n)=f(c^x*d^y); 原本题意是各个质因数的立方和其实就等于1的立方和加到n的因子个数的立方和;这里给出公式是

(n*(n+1)/2)^2; 那么因为f(n)=f(c^x*d^y);==1到c^x的立方*1到d^y的因子个数立方和;自己慢慢体会qaq
代码

#include <iostream>
#include <cmath>
#include <cstring>
#include <cstdio>
using namespace std;
#define mod 10007
int p[];
int prim[];
int len=;
void isp() //素数筛
{
memset(p,,sizeof(p));
p[]=;p[]=;p[]=;
for(int i=;i<;i++)
{
if(p[i])
continue;
for(int j=i;j*i<;j++)
{
p[i*j]=;
}
prim[len++]=i;
} }
int main()
{
isp();
long long cur=;
long long ans=;
long long a,b;
while(cin>>a>>b)
{
ans=;
for(int i=;prim[i]*prim[i]<=a;i++)
{ long long sum=;
int j=;
if(a%prim[i]==)
{
while(a%prim[i]==)
{
a/=prim[i];
j++;
}
sum=(b*j+)*(b*j+)/%mod;
sum*=sum;
ans=ans*sum%mod;
}
}
if(a>)
{
long long sum=;
sum=(b+)*(b+)/%mod;
sum*=sum;
ans=ans*sum%mod;
} printf("Case %lld: %lld\n",cur++,ans);
}
return ;
}

hdu2421(数学,因式分解素数筛)的更多相关文章

  1. Prime Path素数筛与BFS动态规划

    埃拉托斯特尼筛法(sieve of Eratosthenes ) 是古希腊数学家埃拉托斯特尼发明的计算素数的方法.对于求解不大于n的所有素数,我们先找出sqrt(n)内的所有素数p1到pk,其中k = ...

  2. Help Hanzo (素数筛+区间枚举)

    Help Hanzo 题意:求a~b间素数个数(1 ≤ a ≤ b < 231, b - a ≤ 100000).     (全题在文末) 题解: a~b枚举必定TLE,普通打表MLE,真是头疼 ...

  3. 素数筛 poj 2689

    素数筛 #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; ...

  4. BestCoder Round #85 hdu5778 abs(素数筛+暴力)

    abs 题意: 问题描述 给定一个数x,求正整数y,使得满足以下条件: 1.y-x的绝对值最小 2.y的质因数分解式中每个质因数均恰好出现2次. 输入描述 第一行输入一个整数T 每组数据有一行,一个整 ...

  5. poj 3048 Max Factor(素数筛)

    这题就是先写个素数筛,存到prime里,之后遍历就好,取余,看是否等于0,如果等于0就更新,感觉自己说的不明白,引用下别人的话吧: 素数打表,找出20000之前的所有素数,存入prime数组,对于每个 ...

  6. Codeforces Round #257 (Div. 1) C. Jzzhu and Apples (素数筛)

    题目链接:http://codeforces.com/problemset/problem/449/C 给你n个数,从1到n.然后从这些数中挑选出不互质的数对最多有多少对. 先是素数筛,显然2的倍数的 ...

  7. Light oj 1197 - Help Hanzo (素数筛技巧)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1197 给你a和b求a到b之间的素数个数. 先在小区间素数筛,大区间就用类似素数筛的想法 ...

  8. 素数筛&&欧拉筛

    折腾了一晚上很水的数论,整个人都萌萌哒 主要看了欧拉筛和素数筛的O(n)的算法 这个比那个一长串英文名的算法的优势在于没有多次计算一个数,也就是说一个数只筛了一次,主要是在%==0之后跳出实现的,具体 ...

  9. SDUT Fermat’s Chirstmas Theorem(素数筛)

    Fermat's Chirstmas Theorem Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描写叙述 In a letter ...

随机推荐

  1. 查看系统PCI设备

    # lspci Host bridge:主板 VGA compatible controller:VGA显卡设备 Class 0403:声卡设备 USB Controller:USB接口设备 SATA ...

  2. 两台Linux主机 scp免密传输

    两台服务器IP如下配置 Linux1: 10.0.0.1   Linux2: 10.0.0.2 Linux1服务器执行如下操作: #  ssh-keygen -t rsa 然后一直回车就行 # sud ...

  3. Linux下文件字符编码格式检测和转换

    目前多数情况下, 我们遇到的非英文字符文件都是使用UTF-8编码的, 这时一般我们查看这些文件的内容都不会有问题. 不过有时, 我们有可能会遇到非UTF-8编码的文件, 比如中文的GBK编码, 或者俄 ...

  4. php 微信客服信息推送失败 微信重复推送客服消息 40001 45047

    /*** * 微信客服发送信息 * 微信客服信息推送失败 微信重复推送客服消息 40001 45047 * 递归提交到微信 直到提交成功 * @param $openid * @param int $ ...

  5. php后端跨域Header头

    header("Access-Control-Allow-Origin: http://a.com"); // 允许a.com发起的跨域请求 //如果需要设置允许所有域名发起的跨域 ...

  6. 微信小程序-通知公告滚动提示

    wxml如下: <view class='scroll_view_border'> <view class="srcoll_view" bindtap=" ...

  7. tarnado源码解析系列一

    目录 tarnado tarnado源码安装 tarnado测试程序 application类的解析 一. tarnado简介 最近在学习Python,无意间接触到的tarnado,感觉tarnado ...

  8. JavaScript之原型 Prototype

    1.我们所创建的每一个函数,解析器都会向函数中添加一个属性prototype.这个属性对应着一个对象,这个对象就是我们所谓的原型对象.如果函索作为普通函数调用prototype没有任何作用. 当函数以 ...

  9. kuangbin 最小生成树

    A & M - Jungle Roads HDU - 1301 题意:字母之间的路,求最小生成树 题解:处理好建边以后就是一个Prime #include<cstdio> #inc ...

  10. Andy's First Dictionary(uva 10815) set用法

    参考:https://www.cnblogs.com/yjlblog/p/6947747.html https://blog.csdn.net/hnust_taoshiqian/article/det ...