The traffic network in a country consists of N cities (labeled with integers from 1 to N) and N-1 roads connecting

the cities. There is a unique path between each pair of different cities, and we know the exact length of each road.

Write a program that will, for each of the K given pairs of cities, find the length of the shortest and the length

of the longest road on the path between the two cities.

Input

The first line of input contains an integer N, 2 ≤ N ≤ 100 000. Each of the following N-1 lines contains three

integers A, B and C meaning that there is a road of length C between city A and city B. 
The length of each road will be a positive integer less than or equal to 1 000 000. 
The next line contains an integer K, 1 ≤ K ≤ 100 000. Each of the following K lines contains two different

integers D and E – the labels of the two cities constituting one query.

Output

Each of the K lines of output should contain two integers – the lengths from the task description for the

corresponding pair of the cities.

题目大意:给一棵n个点的树,每条边有一个权值,k个询问,问u到v的简单路径中,权值最小和最大分别为多少。

思路:首先要会普通的tarjan求LCA的算法,在合并集合的时候算出每个点到其根节点的最小和最大权值,在求出某一对询问(u, v)的LCA之后,回溯到他们的LCA的时候把LCA的子集都合并到了LCA上,那么u和v分别到LCA的最小最大权值就知道了,再取其中的最小最大值即可。

PS:时间复杂度为O(n+k)

代码(6470MS):

 #include <cstdio>
#include <cstring>
#include <queue>
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
#define X first
#define Y second
typedef pair<int, int> PII;
typedef vector<PII> VPII;
typedef vector<int> VI; const int MAXN = ;
const int MAXE = MAXN << ;
const int INF = 0x7fff7fff; int head[MAXN], to[MAXE], next[MAXE], cost[MAXE], ecnt;
int n, m, fa[MAXN]; PII edge[MAXN], a[MAXN], ans[MAXN];
VPII query[MAXN];
VI b[MAXN]; bool vis[MAXN]; void init() {
for(int i = ; i <= n; ++i) fa[i] = i;
ecnt = ;
} void add_edge(int u, int v, int w) {
to[ecnt] = v; cost[ecnt] = w; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; cost[ecnt] = w; next[ecnt] = head[v]; head[v] = ecnt++;
} int get_set(int x) {
if(fa[x] == x) return x;
int ret = get_set(fa[x]);
edge[x].X = max(edge[x].X, edge[fa[x]].X);
edge[x].Y = min(edge[x].Y, edge[fa[x]].Y);
return fa[x] = ret;
} void LCA(int u, int f) {
edge[u].X = ; edge[u].Y = INF;
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(v == f) continue;
LCA(v, u);
edge[v].X = edge[v].Y = cost[p];
fa[v] = u;
}
vis[u] = true;
for(VPII::iterator it = query[u].begin(); it != query[u].end(); ++it)
if(vis[it->X]) b[get_set(it->X)].push_back(it->Y);
for(VI::iterator it = b[u].begin(); it != b[u].end(); ++it) {
int id = *it, u = a[id].X, v = a[id].Y;
get_set(u); get_set(v);
ans[id] = make_pair(max(edge[u].X, edge[v].X), min(edge[u].Y, edge[v].Y));
}
} int main() {
scanf("%d", &n);
init();
for(int i = ; i < n; ++i) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
add_edge(u, v, w);
}
scanf("%d", &m);
for(int i = ; i <= m; ++i) {
scanf("%d%d", &a[i].X, &a[i].Y);
query[a[i].X].push_back(make_pair(a[i].Y, i));
query[a[i].Y].push_back(make_pair(a[i].X, i));
}
LCA(, );
for(int i = ; i <= m; ++i) printf("%d %d\n", ans[i].Y, ans[i].X);
}

SPOJ 3978 Distance Query(tarjan求LCA)的更多相关文章

  1. 【Tarjan】洛谷P3379 Tarjan求LCA

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

  2. 倍增\ tarjan求lca

    对于每个节点v,记录anc[v][k],表示从它向上走2k步后到达的节点(如果越过了根节点,那么anc[v][k]就是根节点). dfs函数对树进行的dfs,先求出anc[v][0],再利用anc[v ...

  3. Tarjan求LCA

    LCA问题算是一类比较经典的树上的问题 做法比较多样 比如说暴力啊,倍增啊等等 今天在这里给大家讲一下tarjan算法! tarjan求LCA是一种稳定高速的算法 时间复杂度能做到预处理O(n + m ...

  4. 详解使用 Tarjan 求 LCA 问题(图解)

    LCA问题有多种求法,例如倍增,Tarjan. 本篇博文讲解如何使用Tarjan求LCA. 如果你还不知道什么是LCA,没关系,本文会详细解释. 在本文中,因为我懒为方便理解,使用二叉树进行示范. L ...

  5. 倍增 Tarjan 求LCA

                                                                                                         ...

  6. tarjan求lca的神奇

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

  7. Tarjan求LCA(离线)

    基本思想 把要求的点对保存下来,在dfs时顺带求出来. 方法 将每个已经遍历的点指向它回溯的最高节点(遍历它的子树时指向自己),每遍历到一个点就处理它存在的询问如果另一个点已经遍历,则lca就是另一个 ...

  8. 图论分支-倍增Tarjan求LCA

    LCA,最近公共祖先,这是树上最常用的算法之一,因为它可以求距离,也可以求路径等等 LCA有两种写法,一种是倍增思想,另一种是Tarjan求法,我们可以通过一道题来看一看, 题目描述 欢乐岛上有个非常 ...

  9. tarjan求lca :并查集+dfs

    //参考博客 https://www.cnblogs.com/jsawz/p/6723221.html#include<bits/stdc++.h> using namespace std ...

随机推荐

  1. stl之std::remove_copy

    template <class InputIterator, class OutputIterator, class T> OutputIterator remove_copy (Inpu ...

  2. c#最近博文结尾

    总结一下最近的内容.最近休息一段时间,学习了很多内容,研究了一些新的东西.也不说了.前面的博文主要内容. (1)分布式部署(etcd) (2) 分布式注意事项 (3)c#序列化(messagepack ...

  3. Spring初始介绍

    一.spring介绍 三层架构中spring位置: spring:对象的容器,相当于map容器,已经存好了相应的对象,而这三层对象(web层,service层,)进行创建时,不需要在进行new对象,s ...

  4. 一个关于 json ,加密,测试,集多功能为一体的在线工具

    很多情况下我们会序列化json或者解析json,那么要解析json也许使用json实体类会好很多,或者你有时候需要压缩转义json的时候, 有一个网站真的是非常好用,里面什么都有......是真的啥都 ...

  5. cefsharp作为采集工具(学习笔记)

    cefsharp(webkit内核)浏览器替代webbrowser用来采集页面数据. 需要在页面form加载完毕,用异步方式自动获取sourcecode. 由于国内cefsharp的资料相对比较少,在 ...

  6. JS数组&对象遍历

    遍历的总结,经常用到的,希望帮助你我成长. JS数组遍历: 1,普通for循环 var arr = [1,2,3,4,9]; for ( var i = 0; i <arr.length; i+ ...

  7. ExtJS动态切换主题

    ExtJS动态切换主题         在Sencha Cmd构建的Ext程序中怎么去动态切换主题,目前看好像只能单一切换,但是在官网文档找到了答案 Resource Management在上一节通过 ...

  8. C# Winform WebBrowser控件

    C# WinForm WebBrowser 1.主要用途:使用户可以在窗体中导航网页. 2.注意:WebBrowser 控件会占用大量资源.使用完该控件后一定要调用 Dispose 方法,以便确保及时 ...

  9. 电子商城实录------定义init初始化的方法

    路由方法的设置 //路由方法 private static function dispatch(){ //获取控制器名称(类比:英文单词的后缀) $controller_name=CONTROLLER ...

  10. 12.2.1 访问元素的样式【JavaScript高级程序设计第三版】

    任何支持style 特性的HTML 元素在JavaScript 中都有一个对应的style 属性.这个style 对象是CSSStyleDeclaration 的实例,包含着通过HTML 的style ...