The traffic network in a country consists of N cities (labeled with integers from 1 to N) and N-1 roads connecting

the cities. There is a unique path between each pair of different cities, and we know the exact length of each road.

Write a program that will, for each of the K given pairs of cities, find the length of the shortest and the length

of the longest road on the path between the two cities.

Input

The first line of input contains an integer N, 2 ≤ N ≤ 100 000. Each of the following N-1 lines contains three

integers A, B and C meaning that there is a road of length C between city A and city B. 
The length of each road will be a positive integer less than or equal to 1 000 000. 
The next line contains an integer K, 1 ≤ K ≤ 100 000. Each of the following K lines contains two different

integers D and E – the labels of the two cities constituting one query.

Output

Each of the K lines of output should contain two integers – the lengths from the task description for the

corresponding pair of the cities.

题目大意:给一棵n个点的树,每条边有一个权值,k个询问,问u到v的简单路径中,权值最小和最大分别为多少。

思路:首先要会普通的tarjan求LCA的算法,在合并集合的时候算出每个点到其根节点的最小和最大权值,在求出某一对询问(u, v)的LCA之后,回溯到他们的LCA的时候把LCA的子集都合并到了LCA上,那么u和v分别到LCA的最小最大权值就知道了,再取其中的最小最大值即可。

PS:时间复杂度为O(n+k)

代码(6470MS):

 #include <cstdio>
#include <cstring>
#include <queue>
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
#define X first
#define Y second
typedef pair<int, int> PII;
typedef vector<PII> VPII;
typedef vector<int> VI; const int MAXN = ;
const int MAXE = MAXN << ;
const int INF = 0x7fff7fff; int head[MAXN], to[MAXE], next[MAXE], cost[MAXE], ecnt;
int n, m, fa[MAXN]; PII edge[MAXN], a[MAXN], ans[MAXN];
VPII query[MAXN];
VI b[MAXN]; bool vis[MAXN]; void init() {
for(int i = ; i <= n; ++i) fa[i] = i;
ecnt = ;
} void add_edge(int u, int v, int w) {
to[ecnt] = v; cost[ecnt] = w; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; cost[ecnt] = w; next[ecnt] = head[v]; head[v] = ecnt++;
} int get_set(int x) {
if(fa[x] == x) return x;
int ret = get_set(fa[x]);
edge[x].X = max(edge[x].X, edge[fa[x]].X);
edge[x].Y = min(edge[x].Y, edge[fa[x]].Y);
return fa[x] = ret;
} void LCA(int u, int f) {
edge[u].X = ; edge[u].Y = INF;
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(v == f) continue;
LCA(v, u);
edge[v].X = edge[v].Y = cost[p];
fa[v] = u;
}
vis[u] = true;
for(VPII::iterator it = query[u].begin(); it != query[u].end(); ++it)
if(vis[it->X]) b[get_set(it->X)].push_back(it->Y);
for(VI::iterator it = b[u].begin(); it != b[u].end(); ++it) {
int id = *it, u = a[id].X, v = a[id].Y;
get_set(u); get_set(v);
ans[id] = make_pair(max(edge[u].X, edge[v].X), min(edge[u].Y, edge[v].Y));
}
} int main() {
scanf("%d", &n);
init();
for(int i = ; i < n; ++i) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
add_edge(u, v, w);
}
scanf("%d", &m);
for(int i = ; i <= m; ++i) {
scanf("%d%d", &a[i].X, &a[i].Y);
query[a[i].X].push_back(make_pair(a[i].Y, i));
query[a[i].Y].push_back(make_pair(a[i].X, i));
}
LCA(, );
for(int i = ; i <= m; ++i) printf("%d %d\n", ans[i].Y, ans[i].X);
}

SPOJ 3978 Distance Query(tarjan求LCA)的更多相关文章

  1. 【Tarjan】洛谷P3379 Tarjan求LCA

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

  2. 倍增\ tarjan求lca

    对于每个节点v,记录anc[v][k],表示从它向上走2k步后到达的节点(如果越过了根节点,那么anc[v][k]就是根节点). dfs函数对树进行的dfs,先求出anc[v][0],再利用anc[v ...

  3. Tarjan求LCA

    LCA问题算是一类比较经典的树上的问题 做法比较多样 比如说暴力啊,倍增啊等等 今天在这里给大家讲一下tarjan算法! tarjan求LCA是一种稳定高速的算法 时间复杂度能做到预处理O(n + m ...

  4. 详解使用 Tarjan 求 LCA 问题(图解)

    LCA问题有多种求法,例如倍增,Tarjan. 本篇博文讲解如何使用Tarjan求LCA. 如果你还不知道什么是LCA,没关系,本文会详细解释. 在本文中,因为我懒为方便理解,使用二叉树进行示范. L ...

  5. 倍增 Tarjan 求LCA

                                                                                                         ...

  6. tarjan求lca的神奇

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

  7. Tarjan求LCA(离线)

    基本思想 把要求的点对保存下来,在dfs时顺带求出来. 方法 将每个已经遍历的点指向它回溯的最高节点(遍历它的子树时指向自己),每遍历到一个点就处理它存在的询问如果另一个点已经遍历,则lca就是另一个 ...

  8. 图论分支-倍增Tarjan求LCA

    LCA,最近公共祖先,这是树上最常用的算法之一,因为它可以求距离,也可以求路径等等 LCA有两种写法,一种是倍增思想,另一种是Tarjan求法,我们可以通过一道题来看一看, 题目描述 欢乐岛上有个非常 ...

  9. tarjan求lca :并查集+dfs

    //参考博客 https://www.cnblogs.com/jsawz/p/6723221.html#include<bits/stdc++.h> using namespace std ...

随机推荐

  1. 数据库——MySQL——单表查询

    单表查询语法: SELECT 字段1,字段2... FROM 表名 WHERE 条件 GROUP BY field HAVING 筛选 ORDER BY field LIMIT 限制条数 关键字的执行 ...

  2. 关于前端token

    主要是一些前端使用的流程: 客户端使用用户名密码登录.服务端收到请求,去验证用户名与密码.验证成功后,服务端会签发一个 Token,把这个 Token 发送给客户端.客户端将收到的Token存储起来. ...

  3. wubiuefi-支持新版本ubuntu的wubi

    由于某些原因,ubuntu官方不再提供新版的wubi 这就使得部分想快速且安全尝试新版ubuntu的用户望而却步 最近在外文网站找到了wubi的新版本wubiuefi,支持最新版的ubuntu 目前支 ...

  4. SpringBoot学习17:springboot热部署配置

    spring为开发者提供了一个名为spring-boot-devtools的模块来使Spring Boot应用支持热部署,提高开发者的开发效率,无需手动重启Spring Boot应用. devtool ...

  5. DB数据源配置之抽象(〇)

    DB数据源配置之抽象(〇) liuyuhang原创,未经允许禁止转载 DB数据源之SpringBoot+Mybatis踏坑过程实录(一) DB数据源之SpringBoot+MyBatis踏坑过程(二) ...

  6. django写一个简单的登陆注册

    要写这个,前提还是需要知道三个知识: 一个是urls.py,它是写我们的路由关系的,之前我写了通过wsgiref写一个简单的服务端,也用到了路由,就是 请求过来的url和视图函数的对应关系. 二是就是 ...

  7. Angularjs基础(六)

    AngularJS HTML DOM AngularJS为HTML DOM 元素的属性提供了绑定应用数据的指令. ng-disabled指令 ng-disabled指令直接绑定应用数据到HTML的di ...

  8. fabricjs 的用途

    使用html5 的canvas画板做一些图片旋转,拖动,放大,缩小和合成图片的功能,有没有一个集成好的组件库呢?答案肯定是有的,而且还不止我前面提到的功能,下面介绍一下我使用的fabricjs. 官网 ...

  9. QQ群排名优化到霸屏的策略怎么做?

    谈起QQ群排名霸屏,首先要弄清楚概念,有些刚接触QQ群的朋友可能不太了解,所谓的QQ群排名霸屏,就是指当你的客户群体搜索QQ群某个关键词时,出现在QQ群搜索结果前面的群,全部或者大部分都是我们自己的群 ...

  10. ThinkPHP创建应用

    新建一个文件 引入ThinkPHP文件