scrollTop()--返回或设置匹配元素的滚动条的垂直位置
scrollTop() 方法返回或设置匹配元素的滚动条的垂直位置。
scroll top offset 指的是滚动条相对于其顶部的偏移。
如果该方法未设置参数,则返回以像素计的相对滚动条顶部的偏移。
语法
$(selector).scrollTop(offset)
提示和注释
注释:该方法对于可见元素和不可见元素均有效。
注释:当用于获取值时,该方法只返回第一个匹配元素的 scroll top offset。
注释:当用于设置值时,该方法设置所有匹配元素的 scroll top offset。
实例:
aaarticlea/jpeg;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCACHArUDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7I+Fv/I9fEH/r9j/9Cmr02vMvhb/yPXxB/wCv2P8A9Cmr02sMd/Fj/hj/AOkoKHwP1f5liZb62+Lmlg6vezWF5o99L/ZrmMW8Lxy2ShlCoGYne/Ls2Nx27QSDyWstrug69ZyTWevTavda9FDDqMGqK2nPaPdAmMWhnGSlnuViLfIMbyZ+Uy16HdeBfDd9rY1m58O6VcaurpKNQlsomnDpjY3mFd2V2rg54wMdKl0/wjoekardarY6Lp9lqlzv8+9t7SOOabcwZt7gAtlgCcnkjNbLYDgtQtrqx8Y3fiG7ll1LQJ9Ytbe2lsfEl5GbVyYLXyjZoBA4FyHL5foz5BI2n1isb/hEdD/t/wDt3+xNO/tv/oJfZI/tP3Nn+sxu+78vXpx0rZpgVrD/AFLf9dZP/Q2qzVaw/wBS3/XWT/0Nqs1EdkAUUUVYBRRRQAUUUUAFFFFABRRRQB5j+0Zr8Phj4Qa1qFx4nt/CFuJrKGTVLu4ktYdst3DEbd7mMF7RZw/kG7QbrcTGYcxisr9nSfw94L/Z20ae3nuNG8J6XDePHPrOqm7t7SyiuJiGgvZApl09Y1zbTuF3Wogc4ya9jrm9J8AeHtG8BWXgi30m3k8KWmmJo0elXYNzC1ksQhEDiQsZF8sbTvJ3DOc5NAHFfGn4l654c+GuheK/h9ceH9cF/rOi20K6g7vZ6ja397Bar5VzCx8rP2lJFnCTKFU/un3Ajl/+FxeN/tX/AAhfnaB/wmf/AAmf/CI/8JF/Zk/9nf8AID/tr7R9g+0+Z/qv9G2favvfvt2P3Ndl8WvgLoPxZ+GNp4Ae6uPDXhi2ms5FsdEtLEwvFauskFsYbm3mi8gPHEfLCAERhTlCyt0X/CqPA/8Awgn/AAhP/CHeH/8AhDf+hc/suD+zv9b53/Hvs8v/AFv7z7v3vm680AeU6h8WviHB4a8T6NYxeH9Y8faJ4mi8PJPBbCBNT36bb6kXtLC4vog8qw3BRoWvk+SCacOdot25a/8Aiz8Xr/4U6pcPq+geGfGumfEDQ/D9zHL4eZjBa3c+mqYZ4F1CeISsL8SFobqVTAyqDDOzGD3O8+CHw61LwdY+EbrwD4YuvClhMbmz0GbR7Z7G2lJcmSOApsRiZZDuAB/eP/eOdXTfh74W0bwc/hDT/DWj6f4UeGa2bQrawijsWilLGWMwKoQq5dyy4w25s5yaADwXeX02mTWWsa5pGveINOmNtqc+iWrWkUUpVZUjNu087xN5MsLbWkJIcOMBwB4v4W+I3irSf2ZfhV43t9Qt7zUvFGp6DfaumrxS3Q8rW9QgE9vasJVMKwNqG2Df5oSKBIyH++Pc/C/hPRPA+hWuieG9G0/QNFtS32fTtKtUtreLcxdtkaAKuWZmOByWJ6msnw18NNE8N+BZvB3kHVfDcn2uL+ztTRJoFtZ5ZH+xLHtCC2jSTyI4tu1YUROQtAHi+t/HrxvHoXj+78N3XhDxBdeGviZp3hK3R4J4re7tbptNja3kmSeQw3MM2otG84SRQbZh9nBO1fafD+geI7rwtqWl+Ndc0/WLu88yH7V4asrnRPLgdAu1T9rmlSUHeRKkqEZXaFK7jlX37Pfwt1S0ls734Z+ELu0m+y+ZDPoVq6P9mhaC1ypjwfJhZo48/cRiq4BIrW/4VR4H/wCEE/4Qn/hDvD//AAhv/Quf2XB/Z3+t87/j32eX/rf3n3fvfN15oA5T9nvxZ/xiz8NPE/ifWT/yJumalqmsatdf9OMck1xPNIf952dj6kmvSdI1Wy1/S7PU9MvbfUdNvYUubW8tJVlhnidQySI6khlZSCGBIIIIrgdc/Z38Bap8MdY+H2maFb+DvCmsTRy6lY+E400kXah4zLG5gVTtmjiEEhGGaJmUMOCPTaAPPPj/AOKdU8FfA/x5rui3X9n6rYaNdTW2pNGsiae4jbF5IjBt8UH+udVSR2SJgkcrlY27TSdNi0bS7LT7driSC0hSCN7u5kuZmVVCgvLIzPI2By7sWY5JJJJo1fSrLX9LvNM1Oyt9R029he2urO7iWWGeJ1KvG6MCGVlJBUgggkGjSdNi0bS7LT7driSC0hSCN7u5kuZmVVCgvLIzPI2By7sWY5JJJJoAv0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfOnwt/5Hr4g/8AX7H/AOhTV6bXmXwt/wCR6+IP/X7H/wChTV6bWGO/ix/wx/8ASUFD4H6v8y7LqGs2/wAUrHT5b63fRLvS7y5itI7UpIkkUlou55S7b/8AXPgKqABudxAI5PU/GGsaNrSS3l9rMN8+tw2I0r+yS2lm2lvFgjf7SID8xgdZP9fxKdpA5jrt7vwFpN/4lh16Y6j/AGnDxG8eqXSRKuUJURLII9rGNCy7cMVBYGprbwbplrrb6r/ptxeb3lT7ZqFxcRQu2QWiikdkjOGZQUUYVmUYBIOy2A5PUfGd9P45u7aVtW0rQ9K1G105ruxS0kt7ieZIHVJ/M3TAM1xFEBEg27izSYP7r0ysC68E6Rea2NVlgkN1vSVo1uZVt5ZExskkgDeXJIu1MOylh5ceCNi436YFaw/1Lf8AXWT/ANDarNVrD/Ut/wBdZP8A0Nqs1EdkAUUUVYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGN4nutbtNBupfDmm2Gqa0u37PZ6pfPY28nzANvmSGZkwu4jEbZIA4B3DxbUfjV4vtf2Yfhj498M6Vp+ta14i/4RlLiHxLqBhwmozWsLM0ltbBWl3XKqWWKNF3NIIyEED+0+KfDVp4w0K50i/l1C3tLgrvk0vUrjT7gbWDDZPbyRypyoztYZGQcgkHlPDvwJ8G+FvhyfAljY6g/hb935Nne6ze3j2nlCMQ/Zpppnlt/KMMTReS6eU6B02sN1AGB8TfjZr3wo8BeHb7WfCdvd+Mdc1M6Vb6Not1e6jaLKIri43GaCwe5Zfs9rI2Y7NyHIUgIGlXlbT9pzxjqGn+ETbfCu5Gpa74gufDbW2oXl3papcLp8l9Bcw/bbGCWW02RSLNK0UckbRSCKK6wu/0r/hRHg3/hFv7C+xah5P23+0v7S/tm9/tb7Vs8r7R/aPnfa/N8n9xv83d5P7nPlfJVSP8AZ68IJc+HLiSXxRe3Hh3U31jTZb7xfq900N00YiZmMt0xkXywyeW+5Nssw24mkDgFX4JfHu3+NnmtD4f1Dw/HNo2meI7BNQlheWfTb/7QttJIInZYpS1nO3lhnxG0DFg7yRRd/wCJ7rW7TQbqXw5pthqmtLt+z2eqXz2NvJ8wDb5khmZMLuIxG2SAOAdw80sPB2lfs9W2m2/gT4a+J/FCPpkGjE6Xq8E7WdlaSTSWsDtqd/GSqte3ATYWwo2HaqRqOh068vPi5oWr6R4j8F+L/AdqfJIkuNZt7O4uPmLfuZ9LvpJY9pRd2Wj3B8fMC4ABynh/406pdfBP4Pa1p2lnWvFHj2zsEsLfWdRW2iM8mmyX8rXVzBbEL+5tp/mitsNIUAjjViUt/s9+LPFnie9+KNr4wa4jvtE8Wmxt7O4ktpRZwtpthc+VFLBHGJYBJcytFJKgmMTR+aFkDKurpH7O3gbQ/AVn4MsrXWItD0+ZLjTwfEWovd6ayRCFRaXbXBntVEW6PZDIi7JJFxtkcNq/Dn4OeEvhPca5N4W0+406TXJo7nURJqNzcLc3CRiM3DLLIw8+RVUyzACSZgHlZ2+agDoPFeoapo3hXWb/AETST4g1m1s5p7HSftK2322dULRwec+Vj3sAu9uF3ZPAo8Kahqms+FdGv9b0k+H9ZurOGe+0n7Stz9inZA0kHnJhZNjErvXhtuRwaTxZ4X0vxx4W1jw3rdr9t0bWLKbT7628xo/OglQxyJuQhlyrEZUgjPBBo8J+F9L8D+FtH8N6Ja/YtG0eyh0+xtvMaTyYIkEcabnJZsKoGWJJxySaAF8T3Wt2mg3UvhzTbDVNaXb9ns9UvnsbeT5gG3zJDMyYXcRiNskAcA7h4tqPxq8X2v7MPwx8e+GdK0/Wta8Rf8IylxD4l1Aw4TUZrWFmaS2tgrS7rlVLLFGi7mkEZCCB/afFPhq08YaFc6Rfy6hb2lwV3yaXqVxp9wNrBhsnt5I5U5UZ2sMjIOQSDynh34E+DfC3w5PgSxsdQfwt+78mzvdZvbx7TyhGIfs000zy2/lGGJovJdPKdA6bWG6gDA+Jvxs174UeAvDt9rPhO3u/GOuamdKt9G0W6vdRtFlEVxcbjNBYPcsv2e1kbMdm5DkKQEDSrytp+054x1DT/CJtvhXcjUtd8QXPhtrbULy70tUuF0+S+guYfttjBLLabIpFmlaKOSNopBFFdYXf6V/wojwb/wAIt/YX2LUPJ+2/2l/aX9s3v9rfatnlfaP7R877X5vk/uN/m7vJ/c58r5KqR/s9eEEufDlxJL4ovbjw7qb6xpst94v1e6aG6aMRMzGW6YyL5YZPLfcm2WYbcTSBwCr8Evj3b/GzzWh8P6h4fjm0bTPEdgmoSwvLPpt/9oW2kkETssUpaznbywz4jaBiwd5Iou/8T3Wt2mg3UvhzTbDVNaXb9ns9UvnsbeT5gG3zJDMyYXcRiNskAcA7h5pYeDtK/Z6ttNt/Anw18T+KEfTINGJ0vV4J2s7K0kmktYHbU7+MlVa9uAmwthRsO1UjUdDp15efFzQtX0jxH4L8X+A7U+SRJcazb2dxcfMW/cz6XfSSx7Si7stHuD4+YFwADlPD/wAadUuvgn8Hta07SzrXijx7Z2CWFvrOorbRGeTTZL+Vrq5gtiF/c20/zRW2GkKARxqxKW/2e/FnizxPe/FG18YNcR32ieLTY29ncSW0os4W02wufKilgjjEsAkuZWiklQTGJo/NCyBlXV0j9nbwNofgKz8GWVrrEWh6fMlxp4PiLUXu9NZIhCotLtrgz2qiLdHshkRdkki42yOG5/xD+yt4Zk+HPjvwj4TvNQ8Fp458mPXryC5lvnuY8JFduEuXkjW5ubZZI5LnaZHdxLIZXQGgD26iqGkaVZaBpdnpmmWVvp2m2UKW1rZ2kSxQwRIoVI0RQAqqoACgAAAAVfoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD50+Fv/I9fEH/r9j/9Cmr02vMvhb/yPXxB/wCv2P8A9Cmr02sMd/Fj/hj/AOkoKHwP1f5mk3iPVoviNbaJNZ2cWkXGn3N3DcpO73EjxPbKQyFFWMDz26M+7AOVwQeTuvitcWWviK41jQreRtYTSx4YlUrqZR7oW6TbzN0ZWW4A8nmMgA8+ZXWX3gmW+8YWviAeItVt5LZGhjsYktfs4icxNJH80JchzChJ37hztK5qb/hEHuNW+1alrWo6tapN9pg0y5W3W2hkDbkYCOJXfYfuiRnAIVuXVWGy2Aw9X1PxnpGo6b5l/ockeoawtpb6dFp03mvbmRnY+eZwokW1jkkOY8bkKgElc+hVk3GiQT+IrPWWeX7VaWs9pGgxsKTPC7EjGcgwJjnu3B4xrUwK1h/qW/66yf8AobVZqtYf6lv+usn/AKG1WaiOyAKKKKsAooooAKKKKACiiigAooooAKKKKACiiigDh/iz8U7L4PeGrTX9T0jV9V02XU7PTZzotstzNbG5nWCOUw7hJKvmyRpsgWSUmQbY25xymuftMaF4Y8Bav4l1nRdY0m50bU49H1PRb6Sxhmsbp4o50We6a5FjGrQTwyCRrkITLHEG89hCbf7Svgbxf8RvhpFofgp9Pt9aGtaXqH2zUL82f2ZLS9hvN8TfZbpWlLW6IoeIoN5ZgwXy3P8AhnvT/wCxsf8ACUeIP+Eq/tr/AISD/hMM2f8AaP2/7H9g87yvs/2T/jy/0bb9n27fnx5v72gDJ8LftYeE/HHgm213w3Y6hr+oXWtN4et9B0u5sLm4mv1tjeNClyl0bJsWitOWFztAUx584eVWXq/7Z3hTw3o/iG/1zw94g8Pf2PrVv4caHXGsNO+06nJZi8kto5bi7SFfKhO4zSyRwy/L9nkn3puNY/ZmvPD+keIdR8K+KfEGr+M7zWrfxHZXmu6tbw/ZNTFmLC5uY5jp9wq+daNIhheCWFPlWCO3AUofD79m7VLXw3qlx4l8Rahp3jK+8S/8JVBq2l6iuo3Gm3n9mxadIyTXNqsM3mwpOSjWiRRC6McMSCGJwAd/8Ffjd4c+PHhe61zw3Lujsr19PvIPtVtdfZ51SOTZ59rLNbyZjmifMUrgb9rFXV0XqvFOs3fh/Qrq/sNC1DxLdQ7dml6XJbpcT5YKdhuJYohtBLHdIvCnGTgHipPEsPwS0u3tPFHiDxx47nv5pZYb5fC8mpTRKqxgxsNJsFSNcnKmRAzFnwzBcLa07xlafGLQtWsPDmpeMPB93D5IOqXHhi40u4iyxb9yNUsvKlyI2VsRvtDfwlkNAGXpHxyt5PhB8OvFf9n6j4i1XxlZ2T6ZpWl2sNpcX881k14yok9z5MG2GKeUrJckARlBJI5UOfAj4oa58SpfiGmt2H9nS6B4mbSba1l057K4hhNjZ3QinVppVklja6eMzRP5MwjWSL5HUmpoH7OFr4e+GvhjwhB428UTP4Umil8Oa7MNPN9pKx2jWaxxgWgglX7PJPHmeGVv3ztu3LGydB8LPhBb/CvUfFd7B4l8Qa/J4lvYdTvhrs8M+LxbeO3kmjZIkZfNWGImLPlR7FWGOFBsoA6rxZr/APwivhbWNb/s3UNY/s2zmvf7N0mDz7y68tC/lQR5G+Vtu1VyMsQM80eE9f8A+Eq8LaPrf9m6ho/9pWcN7/ZurQeReWvmIH8qePJ2Sru2suThgRnijxZoH/CVeFtY0T+0tQ0f+0rOay/tLSZ/IvLXzEKebBJg7JV3blbBwwBxxR4T0D/hFfC2j6J/aWoax/ZtnDZf2lq0/n3l15aBPNnkwN8rbdzNgZYk45oAwPiz8U7L4PeGrTX9T0jV9V02XU7PTZzotstzNbG5nWCOUw7hJKvmyRpsgWSUmQbY25xymuftMaF4Y8Bav4l1nRdY0m50bU49H1PRb6Sxhmsbp4o50We6a5FjGrQTwyCRrkITLHEG89hCbf7Svgbxf8RvhpFofgp7C31oa1peofbNQvzZ/ZktL2G83xN9lulaUtboih4ig3lmDBfLc/4Z70/+xsf8JP4h/wCEq/tr/hIP+EwzZ/2j9v8Asf2DzvK+z/ZP+PL/AEbb9n27fnx5v72gDJ8LftYeE/HHgm213w3Y6hr+oXWtN4et9B0u5sLm4mv1tjeNClyl0bJsWitOWFztAUx584eVWXq/7Z3hTw3o/iG/1zw94g8Pf2PrVv4caHXGsNO+06nJZi8kto5bi7SFfKhO4zSyRwy/L9nkn3puNY/ZmvPD+keIdR8K+KfEGr+M7zWrfxHZXmu6tbw/ZNTFmLC5uY5jp9wq+daNIhheCWFPlWCO3AUofD79m7VLXw3qlx4k8Rahp3jK+8S/8JVBq2l6iuo3Gm3n9mxadIyTXNqsM3mwpOSjWiRRC6McMSCGJwAd/wDBX43eHPjx4Xutc8Ny7o7K9fT7yD7VbXX2edUjk2efayzW8mY5onzFK4G/axV1dF6rxTrN34f0K6v7DQtQ8S3UO3ZpelyW6XE+WCnYbiWKIbQSx3SLwpxk4B4qTxLD8EtLt7TxR4g8ceO57+aWWG+XwvJqU0SqsYMbDSbBUjXJypkQMxZ8MwXC29O8Y2nxi0LVrDw5qXjDwfdw+TnVLjwxcaXcRZYt+5GqWXlS5EbK2I32hv4SyGgDK0j45W8nwg+HXiv+z9R8Rar4ys7J9M0rS7WG0uL+eaya8ZUSe58mDbDFPKVkuSAIygkkcqHPgR8UNc+JUvxDTW7D+zpdA8TNpNtay6c9lcQwmxs7oRTq00qySxtdPGZon8mYRrJF8jqTU0D9nC18PfDXwx4Qg8beKJn8KTRS+HNdmGnm+0lY7RrNY4wLQQSr9nknjzPDK37523bljZOg+Fnwgt/hXqPiu9g8S+INfk8S3sOp3w12eGfF4tvHbyTRskSMvmrDETFnyo9irDHCg2UAeh0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB86fC3/AJHr4g/9fsf/AKFNXpteZfC3/keviD/1+x/+hTV6bWGO/ix/wx/9JQUPgfq/zNgeKp/+E7i8OSaTcwRS2M95HqMksflzeW1upVFVi/Bn5LhOV4DA5GV/wsG+3/bv7Jt/+Ec/tT+yPtX25vtnnfa/se7yPK2bfP7+bnZ82N3yVa1Hwxrt347sNeg1jTorG0hktVspNMkeRoZWgaUGUXAG4mAbW2YUMcq3Ws66+FkGs+MV1rWINCuTDcpdwSWejCC+LxkGES3TSuzBdq52qm4ooJ2bkbZbAR/8LY/4qz+yPsunf8f32L7D/af/ABN/9Z5fnfYvL/1X/LXd5n+o/eY/hr0auE/4V9fb/sP9rW//AAjn9qf2v9l+wt9s877X9s2+f5uzb5/bys7Plzu+eu7pgVrD/Ut/11k/9DarNVrD/Ut/11k/9DarNRHZAFFFFWAUUUUAFFFFABRRRQAUUUUAcj8U/HX/AAq/4ceI/F72P9o2mgWUmqXlusvlu1rCPMuDGdpDSiFZGRDtV3Cqzxhi69dXIfFPQdc8WfDnxFoXhvUf7F1nVrOTT7fVhO8L6f5w8trqNkG4ywqzSooK73RV3xhvMXL+KGm+J/D/AMG9T0j4T6Vp9p4jSyi0rQYA0VpZ6ZvKQJcbTG6eVbIxm8oI25YdiqSwFAHoGcdOa8u/aF+Pemfs+eAL3xLqOmalq0kcZNvbWVpK8Tyb0RVmuFRo7dS0ifNIQSN2xXYbT6HpVjNp2l2drcX9xqk8EKRSX12sazXDKoBkcRoiBmIyQiKuScKBgDzL9pP4M6v8fPhzdeDLPxLZ+G9Kvyn2+W40pr2Z/Lmilj8oi4jEeGjIbcr5DcbcZNw5eZc23U6MMqXtoqu/dur+nXYpeHv2k9Nh03R5PG9hN4Sv9b1gaLpluunarJHcTsI/LVpLixtzGzGQgblCEIxDnZIEdJ+1z8L0sIbw6zqRhm1iTw+qr4f1EyDUUCFrVoxb71lw64RgCxDBclGAb8Q/gZ4h+KPhbQbfXvFemp4j8P8AiG08Q6XqGnaLJDaB7c/JHPbvdO8ikNLkpNGfmT+6d3nOm/sXeIY9Rtn1D4g6bcWK+PU+IM8Ft4dkikkvM/NCjm8cJERkDKswPO49K3UaL1k7HdCGCkrzk0+y/wCGPZP+GjPh8fBx8TjxB/xLf7U/sTyfsc/23+0PM8v7J9k8vz/P3c+V5e/b82NvNcn8V/2sdA8AfB/xF460jTNS159F1CDTJtLu9PvNNlS4k8p9svnW+6FfKmRw7oEYsihtzqK5hv2OLz7NrYi8aQrNL4/X4haUzaQStpebyWhuF+0Dz4im1RsMLBgW3EHaO48ffs+y/FH4N+MPBniTX4f7S8TTJdXOq6RpaWscc8XkeSRDvd3UC2h3eZK7sNyq8a+WsatSTWt1f8PuJhHBxqRbbcbq/pdX6ep0Pi/4zaR4W+GU/jOS31JbARStGt7o+oQtG0ayHdcRrbPNbxfu23SvFtC4bncoZZPjZ4Z0j4ZeHPGuualBZWGux2f2RbNZ7prme5VTFDbRiJZpmbd8qiIOVBYouGAzPGvww8ZeNvhTrnhS68aaaNR1yOe0vb46CxtobWWAwtHbQC5V0bBD75ZZvnMnG0okfJ3v7Musax8IvAvhG/8AGFm+p+B9U03UtD1O30Z44f8AQo1jiS5tzcs0u5fM3FJYuWXAG0hko07avr+BlCGGaXNKzv8Ah939djpb79qr4Z2Gj6bqUuuXr22oanLokKwaLfSzpfxtta0lhSEyQzkn5YpFVmHKgjmu28AfEXw/8TNIn1Pw5qP2+3t7qWyuEkhkgntriNtskM0MirJFIpxlHVTgqcYIJ8Ij/Y1vFg0LzPGkTTw+Pm+IOquukELd3m8FYbdfPPkRBNyneZmLENuAG0+lfBL4NXnwg1Hx6z69Dq9j4n8RXXiKKFbEwS2ck5/eRNJ5riVQFjAIVCCGJzuAUmqaj7r1HWhhVC9KTb8/X0LOhfHTRrv4YaP441WC40/TddmkOi21jBPqF3qdqzyNZzQW0ERndprRFujCsZeJDJvA8pyMDwP+1BoPiXR/F+qalD9jtNG8TN4ds4tJS71K81F/scF2FWzS2W5W5SOdxNaiJnga2uN5xE7Cr4Q+DPiGD4MfDHQVvLfw94s+HEwttJvb62F/aXa21tc6XHcz28U0bbbizmacRLMrRPLGGZ/LZXybv9l/xDrOn+L4te8baR4mfX/EFt4kaz1nwuJtMkuF0+Oyltru0W5UXVoFiilgiLJJDJBC8ktwyFm5zzztfEv7Sngzw14Ei8WSR+IL+wbWrTQZbKz8P3rajaXVxLGka3Fm0SzwcTRyASIrOskXliRpoVk37z4weG9N8HWPiW7bWLWxv5jb2dlNoN+mp3EoL5jj08wfanYLFJJtERPlxvJ/q1LDyvwP+yZN4I8G+NPD1r4h0eCz1nxBpvivTrfSPDUenW2manaGzkCeRFMEktDNYW5EQ8uXyzIr3Ekj+eOq8a/BbxF8RvAUWk+J/FOka7q6amNReC+8OiTw/cKImhW1n003G+aABvPCyXLMLlY5QwSNIVANXXfjpo1p8MNY8caVBcahpuhTRnWra+gn0+70y1V42vJp7aeITo0No7XQhaMPKgj2A+ahPp1fLtr+y7rPgD4L/FvwRoV1o+o2fxDmSFbLR9Eg0aHRDeW0Gn39xFGkvlyQQxKbmODCysImR5ppJPNr6ioA5v4heNLH4a+AvEni/U4rifTdA0y61a6jtFVpmigiaV1QMygsVQgAkDOMkda1dIlvptLs5NTtre01F4Ua6t7Sdp4YpSo3okjIhdQ2QGKISACVXOBz/wAU/Av/AAsr4c+I/DKXx0q71Kzkis9UEXmvp11jdb3kY3KfNgmEcyEMrK8alWUgEdBpEt9NpdnJqdtb2movCjXVvaTtPDFKVG9EkZELqGyAxRCQASq5wAC/RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB86fC3/keviD/wBfsf8A6FNXpteZfC3/AJHr4g/9fsf/AKFNXptYY7+LH/DH/wBJQUPgfq/zN2PxhZP4wHhpYb0ah9lkuzK9rIluUQwghZWAWQ/v0+4WxghipwDQ/wCFi2/2zH9lah/ZP27+zv7a/c/ZvtHnfZ9mzzPO/wBf+6z5eM852fPUGpaX4lm+I+marbWWlPpFnaz2ReXUZUuGSd7Z3fyxAVynkMAu/wCbcCWXpWTc/Di71vxOtxc2cek6XDqCaiDYa7eSi4eOYSpmzKpbxl3VXdvn534yz+auy2A3f+Fi2/2zH9lah/ZP27+zv7a/c/ZvtHnfZ9mzzPO/1/7rPl4zznZ89dhXmVz8OLvW/E63FzZx6TpcOoJqINhrt5KLh45hKmbMqlvGXdVd2+fnfjLP5q+m0wK1h/qW/wCusn/obVZqtYf6lv8ArrJ/6G1WaiOyAKKKKsAooooAKKKKACiiigAooooAKKKKACiiigDG1/xXofhX+zRres6fo41K9j06x/tC6SD7VdSZ8u3i3kb5W2nai5Y4OBxWX/wtfwP/AMIJ/wAJt/wmPh//AIQ3/oY/7Ug/s7/W+T/x8b/L/wBb+7+9975evFea/toK118DnsY/DFx4ye51/Q2bRI9Mur+G6ih1S2uZ0uEtre4dYPJgl3sYnGPlCuzKjZOufAzxl4g0PWNWuk0eLxLqvi2PxNcaHY65d2kKKmkx6WIINZht1urdtsKXBmhgRmBktWBikkkYA9g/4Wt4H/4QT/hNv+Ex8P8A/CG/9DH/AGpB/Z3+t8n/AI+N/l/63939773y9eKpn42fDtdL1XU28feFxpulQ2lzqF4dZtvJs4rpVa0kmffiNZlZTGzEBwwK5zXztp3wd8efBrTNX8WX8Wn61JpfjKHxlpun2+p63rNxc+fop0eaymlNtdXh8jzRItwqTeaI+YbROI6vhP4H+JviR4X8QeIho1vod5c/EV/GljpFtcan4UW9WTRI9PnU3CRrfWzLPLcs07QI100DOYo47oFQD37xh8eNB8PfDzSvGvh+1n+I2h6lqdrpVtP4QvLG4V5bi5FpEwkluIomX7QyQkq5Ks/ICq7Lb0f43eHJ/C2va54jlPgKPw/erp+tweKLq2t/7MndIZIklnSV7c747q2dSkrD98qkhwyL5Dr/AMAPF198E9W8M6T4a0jS9d1fxZpmuaj9p+Ius3zXEVpNZSmUanLaG6jnZbGKBQigRqFkV9y7DZ8U/sxaw2j22m6Ndf2vaaP4mPiiwnv/ABNqWm6tqLzWd3Zy2t5qsAkuR5EdxF5VwC7vDDFayIBGZ5AD1TX/ANoH4a+GfAmneNdS8d6BB4R1K9j0+y1xNQjls7id5TEESVCVbDK+4g4RY5GcqsbldW1+K/gi80LRdbt/GWgXGi65erp2lajFqkDW+oXTMyLbwSB9sspaN1CISxKMMZBryzSvgTrMfwq1nSU0bT/D/iO48Tad4n2y+LtS8QpqM9jPYzxCe+vIVnj8wWEduSEkESBXVZDmOur8V+DvG/xF+Gs9rraeH9N8SQ6zp2t2Om6fdTz2afYL22u47aW7eJXfzntSGmW3XylnAEUpi3SgHVf8LX8Ef9Dl4f8A+Q1/wjn/ACFIP+Qr/wA+H3/+Pn/pj9//AGap6R8bfh3r+mWWqab4+8Majpt7qaaJa3lprNtLDcag6hktEdXIadlIIiBLEEECvC/FXwN+KPizwt8Q9N1fRPAGu/8ACW+MtD8TPY3Oq3UVmbW1TT/PsZlayl8z/kGRwiTG2ZZ5JTFDtEDd/wDGvwN43+L/AMFrHQbjwt4Qn1q41rTr3VdE1LWp5dLe1tNQjumiExsC03mrbpGyvAqjznOXCASAHqvhfxZonjjQrXW/Des6fr+i3Rb7PqOlXSXNvLtYo2yRCVbDKynB4KkdRWDpvxi8K3Xw8fxzqGqW/h3woJpo11bXLiK1tpIluWt4rlZWfYYJyEkhk3YkjmiYffArI+FfhHxV4c8cfFTUdftNIt9N8Ra/Fqulvpuoy3MxiSwtbLbOj28YjYrZRyYVpBmZlz+7DycD4H+G/ipPgb8FrbT7C3XxX8MpktG0zW5ZbC21KW0sbzR5XWdYpHjgkEz3MMvksZIxECieaWQA77w1+0H4O1/w74s1+81GDw34e8N6mmnXGtazf2kdjOssFtcW91DcJM8ZgmivbZo2ZlY+YAVU8Va1/wDaB+GvhnwJp3jXUvHegQeEdSvY9PstcTUI5bO4neUxBElQlWwyvuIOEWORnKrG5Xxe3/Z28fvB4ymudP8ACFtJqvjOPxlb6f4f1e90nzXl0tbK5t/t0Nv9os5UkXzjeW+Xu8zJJFbpcSILfgz9nTxzovg3x/pGoXGkPcan4s0fxnpDvruo6izS2Z06U6fdXF2jzbQ+mpELrdIWWUyC3iCLb0Ae6f8AC1/A/wDwgn/Cbf8ACY+H/wDhDf8AoY/7Ug/s7/W+T/x8b/L/ANb+7+9975evFVdS+MXhW1+HieOdP1S38ReFDNDG2raHcRXVtHE1ytvLctKr7BBAS8k0m7EccMrH7hFcR8QvAPxA+JPgvTH1W28P22u2Gtf2jHomla1e2aeR9mlt/JTWYoVuoJd0zTmeCCMsmbVlMbyyv5t/wpPxz4O+B3x38Laha2+qz/EGYQaQ+n6tqOsT2kuoWFrpZW7lu1aZoLV0SR7ne5aFZJBBAEWGgD6o1fVbLQNLvNT1O9t9O02yhe5ury7lWKGCJFLPI7sQFVVBJYkAAEmjSNVstf0uz1PTL231HTb2FLm1vLSVZYZ4nUMkiOpIZWUghgSCCCK5X40ReIbv4YeILHwr4c0jxXrt9CthBpXiGQJpsizusMj3QwS8EccjyPGo3SLGyL8zCt/wnop8NeFtG0ny9PgFhZQ2nl6TZfY7NdiBcQQb38mIY+WPc21cDccZoA2qKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+dPhb/wAj18Qf+v2P/wBCmr02vMvhb/yPXxB/6/Y//Qpq9NrDHfxY/wCGP/pKCh8D9X+ZvWnjbSLzWzpUU8hut7xLI1tKtvLImd8cc5Xy5JF2vlFYsPLkyBsbEX/Ce6J/a39n+fcb/P8As32n7DP9j87ds8v7Ts8ndv8A3e3fnf8AJ975awrG41/UfHMM2qeF70W1vdTQ2ly91bfZLSAJIBcKqytJJNLhV+ZF8tJSoxiRpaH9g659h/4Rr+xbnZ/wkX9r/wBsefB9j8n+0/t23Hmedu2fu8eVjf32/PWy2A6z/hPdE/tb+z/PuN/n/ZvtP2Gf7H527Z5f2nZ5O7f+72787/k+98tdLXl39g659h/4Rr+xbnZ/wkX9r/2x58H2Pyf7T+3bceZ527Z+7x5WN/fb89eo0wK1h/qW/wCusn/obVZqtYf6lv8ArrJ/6G1WaiOyAKKKKsAooooAKKKKACiiigAooooAKKKKACkNLRQBE5C9cY780qkFcggfSvEf2p/hZc+P/C3h3XtB0E+IfGXg/XbHW9Js0ngtnuNlxGZ4DNKMJG8YLHBGWijPzbQp84tf2e/E3gH9kTwp4F8M+HbO71O4urC78Wafdw2FzdTK8iSXgg89TayzxsESNptyiOEAMWVDW0YRcU+bVnbTw9OdNTc0m3az/F77bdOvkfWrMoXOcD1pe2RX593/AOz58StS/Zc+Inw8k+H2p3upXPiz+0vC0d/d6UFsrOSZZCyiO4EVuyqk6ukKqu66wilWk2fZPwh8IaT4T8NTS6Z4WvfCUuqXLXt9YajdJcXL3GxITNLIk0yvJIkMbs4kYuSXcmRnJc6agtHcqvhqdGPMqibu1pbayae/W/bod9RXk/7QXg678Y6P4YA8Nf8ACb6Dp2tfbNb8JZt2/ti1+x3UKReXdPHby+XczWtxtmdVH2bepMiRqfNLv4NL/wAIPYtp/wAI57Xwy/iw6zrfw7vNTtb6fV7QaY9lDE0E1w1jGsM62ckdqtwYY4bKFk2SqsC4HAfUdFfGl5+z/daxr/gQz/B64tfB6eObjUotAt59NgHhvRZdEWxuLSWOK6EfkXN8Wupba2aaOaIyecrO5hbvv2Svh7418EW3neLdN1jTJ73wnoUep/21q6ajPd69DJqCajcySLPMXZ4/sG2Qt/qVt4xtEAjjAPftT1Wy0W3S51C8t7G3eaG2SS5lWNWllkWKKMFiAWeR0RV6szKBkkCr9eTftKfCy3+Lnw0i0ubw7p/iqTT9Z0vWk0vUIYZPtCWt7DNcQxed+7Es1stxAu9kRvPKu6ozsOM8S/D651z4beFLK0+DkGl+C9G197q8+GMLabu1LT2tLlAklsJBYbhfXEd15RnZdtuku/z8QqAfRlFfD3xt8O6F8OP2dtXvfFXhy38DeHrj4jeH9T8LeEzqFjp13o0SXGmx3EVpLDcLb2c8nkapcb7e4UKlzJI8kZabb6Vo37M1l8Qvh9r2ga5oJ8A+FrnxMutaD4V/svRb7+x4FsIbZ4fs80F5ZQ+ZcLeXH+j5P+kbi6tJKlAHvvijxRpngrQrrV9Xu/slhb7QzLG0ru7uEjijjQF5ZXdlRI0DO7uqqrMwBy/hf8R9M+LPgTTPFOkQahY2l75sb2WrWjWt5ZzxSvDPbzxNyksU0ckbDkbkOCwwT5rD+zqnw6+Cet+DfBFppGvXN9qdvqIt9ctrXQ4CRNb+YVk0izgME6xwF4blYmljmWJ9xEahe1+Af9uP8G/Clz4i/tCLVLyyW9ey1be15p0cxMsNjO8n7yWW2ieO3aaT95K0JkcB3YUAa5+JvhtfBWs+LDqJ/wCEf0Z9Qjv7zyJP3JspZYbsbNu5tklvKvyg7tuV3Agm1448X2fgTwnqWv3yTzwWcRdba0Aa4upCQscEKkjfNK5WONMgs7qo5IrzX9n7w3p3ir9lDwf4M1u3NzDa+HE8Ja5Zb2TZc2sRsL+33oQTsmhnj3o2Dt3IxBViv7UXw9vfil4T8MeGLHT9NvZbrxHZTtPrGkHUbS1jg33EjyqJE8tWSFoc8iTzvJOwTGROrDQo1KsI1Xypv3n2X9XKSTPSfDHjKz8Wz62thHP5GlX76c106jybmRERpDCwJ3qju0LHgrLDKhGUNdBkHuK+TPh98E9X0f4I+GYrzwjputaZc+I7rxLq3gzT9Ih01ruzuYrgwW09rczeS00Ek1q5jlkCxLaoitI0EbSdJd/CQf8ACI2T2Hwwnt9BbxIdV1XwNdajb3c2p2wsGtYo2ilmNoixSi1eO3ExijitImTbIFhXrrYShGo4wq3SbSen6tNX+7zK5UfR24Z6ijcM9RXyZd/A+91TXvB7TfC64t/Cy+Lp76PRIZ7GEaFpUmlLaTW0iR3ATyZ7sm5kgt2lSWPf5ql2MTcj4c+AXi6/8UfDG48VfD3WtXtorXTz4hu77WLW4lF39m1O11F55GuzJNHMZdNZ0UuslvbxxMpESQDaGX0JQcnXSsr2089F72r0/Hrpc5V3PuIMBxmgkA5yMV8T2/wF+ImreDNJttY0nxALY2GjT+I9Mk1HT9RvNX1CKPU4btyt5JNazsZJNMlBuDgQwQhNr28cadJqHwYvofgRF4fsvAfi3ULiLxdp+qW+m31xotndafFDNbyTzWRsp4YLVWijnRfJZJTLcSMcCRpKmWAoRmoqundpaW0897aetvMOVdz6m1DU7PSbcT393BZQtLFAstxII1aSR1jjQEn7zu6oo6lmAGSRVfxN4m07wh4d1TXtXuPsmlaXay3t3ceWz+VDGheRtqgscKpOACTjgGvnTVPgnd+IvCnjvwxJ8OIbfw3p3i3TNb8N6PdLYtaT2dubQ3UNnEsrJA0xt73CyCFW+2/OV8ybZ654S8Habrnww1DwtqHgOHwV4XvY7iwXw3HLDGwtZVIl3rasY4WdnmOIpH+Uq5ZXZkTlnh6NKKfPfXXbayfffXVdGtxNJHXeJfFWmeEdNhv9WuvslrNe2mnpJ5bPme5uI7aBMKCfmmmjXPQbskgAkbNeT/tUf6R+zl8RdKj+a/13Rrjw9p0PTzr6/X7FZw56L5lxcQpuYhV37mKqCR3/AIr1DVNG8K6zf6JpJ8Qaza2c09jpP2lbb7bOqFo4POfKx72AXe3C7sngVwEGzVDV9VstA0u81PU72307TbKF7m6vLuVYoYIkUs8juxAVVUEliQAASa8h+K/h7X/iT8Pfh/fa14E/tiOC9h1PxT8PPtVpd/a0ewuIzZ5neO1ufIu57abMjoh+y+YmXWNT5X4++CN/rX7NfxP8N2vwb+1x+Ib26k8HeCdukD/hFnfSUtkuNrXAtbb/AEtLmfNrJI4+2b8b3lCgH0loHxM0DX/C2peJPM1DRNF07zDeXXibSbvRvJSNBI8rLexRMIlU5MmNnDfNlWxb8FeN9P8AH2lyahplvrFtbxTG3ZNb0S90qYsFViRFdxROy4YfOFKk5AOVIHzx8V/hPpfir9lvxl4T8Mfs3/2Nf6l9ti0vw39i0CD7LqMli8UOrfu7swJtLLH5iuZxjhNozVnxr8NbDWfgzF4c0D4A6x4U0m718S3/AIc0RfDdtMqrbMwvjaSTTadeKXSGHyrgllOJlUPBC1AH1FVDU9VstFt0udQvLext3mhtkkuZVjVpZZFiijBYgFnkdEVerMygZJAr44P7MGtW/wAFP7DsfC2o6Voc/jP+3dQ8NWVvoK6tqdl/Zn2ULcWhU6K0ou1hmCKqx+TbxS/8fgJbftv2bIdX/Z1u/C8ngfV7xLHxZp/iK18M+NoNBz5VtcWktzBYwadixgWeCO6iCHyg8tzOZWVZncgH1vXJf8LS8Mf8I5/bv9pH+yv7a/4R/wC0fZ5f+P8A/tH+zfJ27d3/AB9/ut2Nv8WdnzVT+EVguk+Do7K18AwfDPSIJpF0/wAOwm1VoYidzNJFaFoImaVpm2xSSAqUdmDu8aeGZ/41yf8ACK/8x7/hDP8AhX32TP8AzHfL/sb7Jv8Au/8AIQ/cebnyv49/l/PQB9WVQ1PVbLRbdLnULy3sbd5obZJLmVY1aWWRYoowWIBZ5HRFXqzMoGSQKq+K9Q1TRvCus3+iaSfEGs2tnNPY6T9pW2+2zqhaODznyse9gF3twu7J4FeVfGf4d3nxz+BWhReIPA2n3WvwXmi+ILrwtqD2975MlvdQT3llFK4ELytCt1bK5KRv5pDMkbsQAe3UV85+Jfh9c658NvCllafByDS/Beja+91efDGFtN3alp7WlygSS2EgsNwvriO68ozsu23SXf5+IV8q+Nvh3Qvhx+ztq974q8OW/gbw9cfEbw/qfhbwmdQsdOu9GiS402O4itJYbhbeznk8jVLjfb3ChUuZJHkjLTbQD7hrm/GnjvRvh9pkV/rM9wsc0wtre2sbOe9u7qUqzeXBbQI8szBEkcrGjFUjkc4VGI8r+GPwp1228J+I7TTZ9Y+C+kX2vjUtG0HRItKabSrIWVvBJamExXdpEst1Hc3W2AnJmDFld5Upfib8LPEh8J+HYZNX8UfE5NM8QHU79Bc2Gl649q1jcW6xWF1bLYpAyzSxSM4lidovtMZkdX8lwDtP+F7+Df8AhFv7d+26h5P23+zf7N/sa9/tb7Vs837P/Z3k/a/N8n9/s8rd5P77HlfPW/4L8d6N8QdMlv8ARp7ho4ZjbXFtfWc9ld2soVW8ue2nRJYWKPG4WRFLJJG4yrqT4DoPw18W+HbTR/E9r4S1iW30rxxJ4it/DF9qltd+IHsn0KTSys95NctFcT/aJnmBmvH22wjRXBjjt11tX0rWbL4U/GvWNZ+GuseIH8e6mot/AUV5Al/PFPp2n6T5NxPBK8UCs8EkjzRyuIoG8wkMrIoB9GUVzfw+8NQ+DPAXhnQLfTbfRrfStMtrCPTbS7ku4bRYolQRJPIqvKqhdokdVZgASASRXSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB86fC3/keviD/1+x/+hTV6bXmXwt/5Hr4g/wDX7H/6FNXptYY7+LH/AAx/9JQUPgfq/wAzqbfxJpNxrdxo8OqWcur26CWbT0uENxGh24ZowdwHzryR/EPUVH/wl2h/2/8A2F/benf23/0Dftcf2n7m/wD1ed33fm6dOelcZp2r22p+ObS0fRNUsobHULr7FBHpE8Vus5Sfzb6a4KCMiTdKqKjNnz97bmcCHP8ALuv7H/4Rf+z9R/tf/hKf7R/48Jvs32f+2Ptm/wC07PJ/1HzY35z8mN/y1stgPUmvIEvI7Uzxrcyo0qQlwHdVKhmC9SAXQE9ty+oq1XmV7Jpmm/GzT7yDRb2O6m0+5sr7UrbRLhkllkksjAJLhYtrAJHINxYqm0glelem0wK1h/qW/wCusn/obVZqtYf6lv8ArrJ/6G1WaiOyAKKKKsAooooAKKKKACiiigAooooAKKKKACiiigChq+q2WgaXeanqd7b6dptlC9zdXl3KsUMESKWeR3YgKqqCSxIAAJNZXgDx74e+Kfg7SvFfhPVrfXPD2qwi4s762J2yLkggggFWVgysjAMrKysAQQOf+O2kXmufDW+t9P8AD+oeJr9L3T7q2stKvbe0vIpIb2CVbqB7kiAy25QXCxzfu5GhEb5VyKq/s4anNr/wT8L65KluE1uGTWbeSK2jt5J7e6me5gnuY4lWMXckUsclx5YEZuHmKfKRQB3+l6rZa1bvc6feW99bpNNbPJbSrIqyxSNFLGSpIDJIjoy9VZWBwQRVXQPFeh+Kv7RGiaxp+sDTb2TTr7+z7pJ/st1HjzLeXYTslXcNyNhhkZHNfNvhn+0P+GWvgn5v/CQf2V/o/wDwn3/CNfbP7X877DdfbN/2L/TftP8AbHk/aPK/fb/P875PPrlPCyaxaDxpBNY/E+08G3Hj+31DVLi4sdSi1m60F/DsMFm8M1qou5cXttaIwiZrtET/AEwKWuMgH2tRXyp/xUH/AAh3/M//APCq/wDhM/8AqMf8JF/YX9j/APg3/wCQ1/218r/p0rUuNA1F/hRcaz4Z1H4n38Vj4z0nXLc+IZ7y3vzplvPZR3kEVriO6mtltIrpfs91G81xIskm2d5YpZAD6XrkfHPw10j4hiy/tW78QWhs9/l/2F4i1HSN2/bnzPsc8XmfdGN+7blsY3Nn5MfUta8U/Fi309l+M/hvSNQ+I0twjrba4sJ0C70CNWDShZIbeCTUAu1GaOeyErlRZujmPKtdQ+NHiPwDoD3+teOLWx1LTPD+qeK77UvDupC7t714tYiv4YLSw+x3iqlzbaOnlWTJhNs7iSOe4kmAPsjwN8NdI+Hgvf7Ku/EF2bzZ5n9u+ItR1fbs3Y8v7ZPL5f3jnZt3YXOdq466vjPVf+Ej0z9naEQeMfiPqupQeONKbT7/AEXwp4hstS060+0WrXiG3vTdXN5Atv8Abpd12Z4WaQRBT5cUYteKvC17448DfEPwebbx/daN4O8f6HqGlNcya1DeTaTBLp8188F25W41DZImrOgSSZwywGEZFpQB9Z6nqtlotulzqF5b2Nu80NsklzKsatLLIsUUYLEAs8joir1ZmUDJIFX6+cfiVeafdfsh/EGLQLHxRZpbaZdxeHJvFjXp1W61MjfYyQfbXa9E4vnijtxKEl82OMwqVMLN7r4s1/8A4RXwtrGt/wBm6hrH9m2c17/ZukwefeXXloX8qCPI3ytt2quRliBnmgDZorwj45+KbvxR8GPC1/aReOPCZ8QzWsskWn6BqF5e6er20k/l6hb6dLHexKCixsbaZGWYxK7NEZUfzTwrpHinSfhlbf2nd+P9R8H3HjJptYvrc67FqlxpP9lFI2tLWWWXWLSIaklujRCV3bZNNlbWYooB9hUlfJPj2G6sPgo994c1r4z77jxzpFxpuoTWeoT6raWSTWkVyI7RYGnNpHaRXY2ajA/nSq8jidpopJer8TadZWHw18KT+HH+I7+A73xA9x4lE1z4hl19bIWlzGgjWVjqcS/bY7E7IAuULuR5LysQD33VtVsvD+lXmp6ne2+nabZQvc3V5dyrFDBEilnkd2ICqqgksSAACTVX/hLNE/4RX/hJv7ZsP+Eb+x/2j/bH2pPsf2XZ5n2jzs7PK2fPvzt285xXlXwl8TzeDvBXjDV9Rh8YXHgu31pf+Ebj1TTdU1DWTYNbWiyb4JY5NQf/AE5r3HnKWCYK4gEZFX9m/wAa23hX9lLwG+r6N4o0+48N+H9L0jUrCbwvqQvo7qO1t45Fjtfs/nTKHbHmRI6fK53YRiAD0rXvit4I8J+FtN8Ta34x0DR/DWpeX9h1jUNUggs7rzEMkflTO4R9yKXXaTlQSOBR4F+K3gj4ofbv+EN8ZeH/ABb9h2fa/wCwtUgvfs+/ds8zynbbu2PjOM7Wx0Nea/s03mnp+zH8N5Nb8O6xbal4I8P2UFxbar4bvYb6zvbfTVinNtBLAJZW2SSxB4FbfvdELZIrgPCWi3dh+zJ8DJp9E8UaPbwaZpWjeNxpGmahZa8llZ6bdRxwbbdFv9sepNAR5A5SSR+YHlYgH1vRXx744utY0z4F67qlrrfj/wAPeH7Hx/oB8L37vqR11NNlutLt7sPBcq91dZnn1MLb3kU28GPbG8YgFe1/s+f2h/Y3ijP/AAkH/CK/21/xTP8AwlP2z+0fsH2O183zftv+l/8AH79u2/aPm27dn7ryqAPSNM1Wy1q3e50+8t763Saa2eS2lWRVlikaKWMlSQGSRHRl6qysDggir9fKnhn+0P8Ahlr4J+b/AMJB/ZX+j/8ACff8I19s/tfzvsN19s3/AGL/AE37T/bHk/aPK/fb/P8AO+Tz6tXtldQ+B7C5sr/4r6h4DvPFhl1mTUxqEetR6UumPFBHZxQImpxwJexWSklRcSEXE0rSwyySyAH1DRXxpeWet6lr/gWxtr/4r6b4OvPHNxa6dcQrrf2v/hH5NEVLhNQeVGniVtVYok15tniRjJbyRRosqd9+yTrXj7V7b7T4zuvE90+oeE9C1S8k8TaY9i0etySahFqUMcTQxCJY1trNRFGoTaEmwzXDyygH0bRXjn7U/gRvH/wrt7dIdYuF0zxBo2sTxaHe3Vvcm1t9Rt5bpkFs6yystus7pGm5zIkZiUyrERyviS8Fz8NvCkei2PxHs/h5ba+8WuSzNrB1+6042ly6SR/O2rBRqD2keAEk2RudptTuYA+jaoanqtlotulzqF5b2Nu80NsklzKsatLLIsUUYLEAs8joir1ZmUDJIFfJnji61jTPgXruqWut+P8Aw94fsfH+gHwvfu+pHXU02W60u3uw8Fyr3V1mefUwtveRTbwY9sbxiAVr+Jv7Q/4Za+Nnlf8ACQf2V/pH/CA/8JL9s/tfzvsNr9j2fbf9N+0/2x532fzf32/yPJ+TyKAPquivPPj54p0zwh8G/Fl/q9zr9pazWR09JPCcbPrBnuSLaBLEKCftLTTRrEegdlJIAJHQfD7S59F8BeGrCeTWJJ7TTLa3kbxDcR3OosyxKpN1LGzJJPkfO6MVZtxBIINAHR0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHzp8Lf8AkeviD/1+x/8AoU1em15l8Lf+R6+IP/X7H/6FNXptYY7+LH/DH/0lBQ+B+r/M70dKWvIdI1XwbqPxTT+zr3TrPV4765tn8qUPqepXCpL5sc3JkW1iCNtWTALxRbNiRxebl/8AEi8//mHf8LF/4Sn/AKZ/2v8AZP7V/wC/vlfYv+A+R/sVstgPcqK8h0nVfBuo/FNf7OvdOs9Xjvrm2fypQ+p6lcKkvmxzcmRbWII21ZMAvFFs2JHF5vr1MCtYf6lv+usn/obVZqtYf6lv+usn/obVZqI7IAoooqwCiiigAooooAKKKKACiiigAorzH9paKxP7PXxIn1C4uLGCy8P3uoLf2Vus9zYywQtNFdW6M8YM8MkaSxnehEkaEOhAYZP7SU18n7L/AI61i/toLHxDonh+XxFAtpO1xDaapYxi9t3R2RPOWK5t4mG+MK4QB0wzJQB7JRXDfGvxbZeBPhH4v13UPFlv4Et7TTJyviW5t1uV06VkKRTCBuJmEjJth5MjbUAJYCtX4evfv4C8NnU9Tudc1I6ZbG61S701tNmvJfKXfM9owBt2dssYSAUJKkDFAHSUUUUAUNM0qy0W3e20+zt7G3eaa5eO2iWNWllkaWWQhQAWeR3dm6szMTkkmr9FFABRRRQAUUUUAFFFFAFDU9Kstat0ttQs7e+t0mhuUjuYlkVZYpFlikAYEBkkRHVuqsqkYIBq/RRQAUUUUAFFFFABRRRQAUUUUAc341+H3hf4kaVFpni3wzpHinTYphcx2et2EV5CkoVlEgSRWAYK7jdjOGI7mukoooAoaZpVlotu9tp9nb2Nu801y8dtEsatLLI0sshCgAs8ju7N1ZmYnJJNX6KKACuR8c+DtY8Wix/srx14g8Fm33+YNCg06X7Tu248z7ZaXGNu042bfvtnd8uOuooA5HwN4O1jwkL7+1fHXiDxobjZ5Y12DTovs23dny/sdpb53bhnfu+4uNvzZ66iigDm/Gvw+8L/ABI0qLTPFvhnSPFOmxTC5js9bsIryFJQrKJAkisAwV3G7GcMR3Naup6VZa1bpbahZ299bpNDcpHcxLIqyxSLLFIAwIDJIiOrdVZVIwQDV+igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD50+Fv8AyPXxB/6/Y/8A0KavTaKKwx38WP8Ahj/6SgofA/V/md6OlLRRWy2AKKKKYFaw/wBS3/XWT/0Nqs0UVEdkAUUUVYBRRRQAUUUUAFFFFABRRRQBQ1PS7LWoEttQs7e+gSaG5SK5iWRVlikWWKQBgQGSSNHVuqsikYIBqr4m8LaZ4v02Gx1e1+12kN7aagkfmMmJ7a4juYHypB+WaGNsdDtwQQSCUUAWtT0uy1qBLbULO3voEmhuUiuYlkVZYpFlikAYEBkkjR1bqrIpGCAav0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z" alt="" />
另外当窗口滑动到没位置再固定某元素的位置的实例:
$('.li_dot span').hover(function(){
var selectedOrder=Number($(this).attr('order'));
honnorLoopTimer=0;
$(this).siblings().removeClass();
$(this).siblings().addClass('span_dot');
$(this).removeClass().addClass('span_dhover');
$('.content_honnor .li_img a').eq(selectedOrder).siblings('a').hide();
$('.content_honnor .li_img a').eq(selectedOrder).stop(false,true).fadeIn(500);
});
scrollTop()--返回或设置匹配元素的滚动条的垂直位置的更多相关文章
- offsetParent() 返回第一个匹配元素用于定位的父节点。
offsetParent() V1.2.6概述 返回第一个匹配元素用于定位的父节点. 这返回父元素中第一个其position设为relative或者absolute的元素.此方法仅对可见元素有效.大理 ...
- React之设置元素的滚动条
在React中,解耦了对DOM元素的操作,但有时我们确实需要对DOM操作,比如设置元素的滚动条,这时ref就满足了我们的需求 在低版本的react中,ref可以是一个string类型的属性,通过thi ...
- driver匹配元素定位用法大全
# -*- coding:utf-8 -*- from selenium import webdriver from selenium.webdriver.common.by import By fr ...
- 【JQuery插件】元素根据滚动条位置自定义吸顶效果
;(function($){ $.fn.extend({ /* 元素根据滚动条位置自定义吸顶插件 @defaultTop 初始化top位置 @startTop 开始滚动和回复原样的位置 @demo v ...
- JavaScript 数组 length 属性获取数组长度或设置数组元素的数目
JavaScript 数组 length 属性 JavaScript 数组 length 属性可返回或设置或组中元素的数目,语法如下: array_object.length 利用 length 属性 ...
- JQuery获取与设置HTML元素的值value
JQuery获取与设置HTML元素的值value 作者:简明现代魔法图书馆 发布时间:2011-07-07 10:16:13 20481 次阅读 服务器君一共花费了13.221 ms进行了6次数据库查 ...
- JavaScript Dom基础-9-Dom查找方法; 设置DOM元素的样式; innerHTML属性的应用; className属性的应用; DOM元素上添加删除获取属性;
JavaScript Dom基础 学习目标 1.掌握基本的Dom查找方法 domcument.getElementById() Domcument.getElementBy TagName() 2.掌 ...
- uwp - RichEditBox 解决设置字体样式后滚动条自动回滚顶部的问题
原文:uwp - RichEditBox 解决设置字体样式后滚动条自动回滚顶部的问题 开发中碰到一个问题,当RichEditBox输入的文本达到一定行数的时候,滚动条此时位于底部,改变文本样式(如字体 ...
- Vue.set 向响应式对象中添加响应式属性,及设置数组元素触发视图更新
一.为什么需要使用Vue.set? vue中不能检测到数组和对象的两种变化: 1.数组长度的变化 vm.arr.length = 4 2.数组通过索引值修改内容 vm.arr[1] = ‘aa’ Vu ...
随机推荐
- windows8 使用docker创建第一个nodejs运行环境
现在公司电脑使用的是windows8操作系统,如果想要运行docker,只能安装Docker ToolBox 关于安装Docker ToolBox,请查看文章<windows8安装docker( ...
- Hash算法详解
这篇不错: https://blog.csdn.net/u014209205/article/details/80820263
- python3类方法,实例方法和静态方法
今天简单总结下python的类方法,实例方法,静态方法. python默认都是实例方法,也就是说,只能实例对象才能调用这个方法. 那是不是说类方法也只能被类对象本身来调用呢,当然,不是.类方法既可以被 ...
- Codeforces Round #124 (Div. 1) C. Paint Tree(极角排序)
C. Paint Tree time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...
- bit & byte & B & KB & Kbps & KBps & ps
存储单位bit & byte & B & KB & Kbps & KBps & ps (bit,位:byte,字节:区别) Bit,位 :二进制数 ...
- [BZOJ 1177] Oil
Link:https://www.lydsy.com/JudgeOnline/problem.php?id=1177 Solution: 相当于将大矩形分为3块,取每块中最大的正方形 对于此类分成几块 ...
- 洛谷 P2742 [USACO5.1]圈奶牛Fencing the Cows
题目描述 农夫约翰想要建造一个围栏用来围住他的奶牛,可是他资金匮乏.他建造的围栏必须包括他的奶牛喜欢吃草的所有地点.对于给出的这些地点的坐标,计算最短的能够围住这些点的围栏的长度. 输入输出格式 输入 ...
- 【枚举】bzoj1709 [Usaco2007 Oct]Super Paintball超级弹珠
由于子弹的轨迹是可逆的,因此我们可以枚举所有敌人的位置,然后统计他们能打到的位置,这些位置也就是能打到他们的位置咯. O(n*k). #include<cstdio> using name ...
- 求斐波那契数的python语言实现---递归和迭代
迭代实现如下: def fab(n): n1 = 1 n2 = 1 if n<1: print("输入有误!") return -1 while (n-2)>0: n3 ...
- 看懂ios命名规则
http://liangrui.blog.51cto.com/1510945/509289/ http://daniellee520.blog.51cto.com/372529/229615