题目:

有一幅以二维整数数组表示的图画,每一个整数表示该图画的像素值大小,数值在 0 到 65535 之间。

An image is represented by a 2-D array of integers, each integer representing the pixel value of the image (from 0 to 65535).

给你一个坐标 (sr, sc) 表示图像渲染开始的像素值(行 ,列)和一个新的颜色值 newColor,让你重新上色这幅图像。

Given a coordinate (sr, sc) representing the starting pixel (row and column) of the flood fill, and a pixel value newColor, "flood fill" the image.

为了完成上色工作,从初始坐标开始,记录初始坐标的上下左右四个方向上像素值与初始坐标相同的相连像素点,接着再记录这四个方向上符合条件的像素点与他们对应四个方向上像素值与初始坐标相同的相连像素点,……,重复该过程。将所有有记录的像素点的颜色值改为新的颜色值。

To perform a "flood fill", consider the starting pixel, plus any pixels connected 4-directionally to the starting pixel of the same color as the starting pixel, plus any pixels connected 4-directionally to those pixels (also with the same color as the starting pixel), and so on. Replace the color of all of the aforementioned pixels with the newColor.

最后返回经过上色渲染后的图像。

At the end, return the modified image.

示例 1:

输入:
image = [[1,1,1],[1,1,0],[1,0,1]]
sr = 1, sc = 1, newColor = 2
输出: [[2,2,2],[2,2,0],[2,0,1]]
解析:
在图像的正中间,(坐标(sr,sc)=(1,1)),
在路径上所有符合条件的像素点的颜色都被更改成2。
注意,右下角的像素没有更改为2,
因为它不是在上下左右四个方向上与初始点相连的像素点。

注意:

  • imageimage[0] 的长度在范围 [1, 50] 内。
  • 给出的初始点将满足 0 <= sr < image.length0 <= sc < image[0].length
  • image[i][j]newColor 表示的颜色值在范围 [0, 65535]内。

Note:

The length of image and image[0] will be in the range [1, 50].

The given starting pixel will satisfy 0 <= sr < image.length and 0 <= sc < image[0].length.

The value of each color in image[i][j] and newColor will be an integer in [0, 65535].

解题思路:

​ 与01矩阵类似,在图的数据结构内找到所有旧的像素点改成新的新素值。无非是图的遍历,BFS和DFS。

就这道题而言,不涉及路径长度,明显DFS深度优先遍历更适合。因为BFS广度优先遍历需要记录每个相邻符合要求的位置,并且不能添加重复的点。 DFS可以用栈或递归实现,如果用栈来解虽然比递归更好理解一些,但是每次依然要存储每个点的索引位置,并且出入栈也会消耗时间。所以这道题的最优解应该是用递归实现的深度优先遍历解题。

代码:

DFS(Java):

class Solution {
private boolean withinBounds(int[][] img, int i, int j) {//判断指针是否溢出
return (i < img.length && i >= 0) && (j < img[0].length && j >= 0);
} private void floodFillProcess(int[][] img, int sr, int sc, int oc, int nc) {
if (withinBounds(img, sr, sc) && img[sr][sc] == oc) {//指针不溢出且像素值为旧值时
img[sr][sc] = nc;//改为新值
floodFillProcess(img, sr - 1, sc, oc, nc);//递归上下左右四个点
floodFillProcess(img, sr + 1, sc, oc, nc);
floodFillProcess(img, sr, sc - 1, oc, nc);
floodFillProcess(img, sr, sc + 1, oc, nc);
}
} public int[][] floodFill(int[][] image, int sr, int sc, int newColor) {
int oc = image[sr][sc];
if (newColor == oc) return image;
floodFillProcess(image, sr, sc, oc, newColor);
return image;
}
}

DFS(Python):

class Solution:
def floodFill(self, image: List[List[int]], sr: int, sc: int, newColor: int) -> List[List[int]]:
oldColor = image[sr][sc]
if oldColor == newColor:
return image
self.dfs(image, sr, sc, oldColor, newColor)
return image def dfs(self, image: List[List[int]], sr: int, sc: int, oldColor: int, newColor: int):
if image[sr][sc] == oldColor:
image[sr][sc] = newColor
if sr-1 >= 0:#先判断是否溢出再决定是否递归
self.dfs(image, sr-1, sc, oldColor, newColor)
if sr+1 < len(image):
self.dfs(image, sr+1, sc, oldColor, newColor)
if sc-1 >= 0:
self.dfs(image, sr, sc-1, oldColor, newColor)
if sc+1 < len(image[0]):
self.dfs(image, sr, sc+1, oldColor, newColor)

附:

BFS深度优先遍历(Java):

class Solution {
public int[][] floodFill(int[][] image, int sr, int sc, int newColor) {
int oldColor = image[sr][sc];
if (oldColor == newColor) return image;//旧像素值与新像素值相等时,无需修改
int rows = image.length;
int columns = image[0].length;
bfs(image, sr * columns + sc, rows, columns, newColor, oldColor);//进入BFS辅助函数
return image;
} private void bfs(int[][] img, int loc, int row, int column, int nc, int oc) {
Set<Integer> set = new LinkedHashSet<>(); //set(),避免添加重复点
Queue<Integer> queue = new LinkedList<>();
queue.add(loc);//队列加入第一个初始点,记录点索引的方式是x*column+y,
while (!queue.isEmpty()) {
int tmp = queue.poll();
int r = tmp / column, c = tmp % column;//拆解位置
if (img[r][c] == oc && !set.contains(tmp)) {//像素值为旧值,并且该点未被计算过
img[r][c] = nc;//改为新值
set.add(tmp);
if (r + 1 < row) if (img[r + 1][c] == oc) queue.add((r + 1) * column + c);
if (r - 1 >= 0) if (img[r - 1][c] == oc) queue.add((r - 1) * column + c);
if (c + 1 < column) if (img[r][c + 1] == oc) queue.add(r * column + c + 1);
if (c - 1 >= 0) if (img[r][c - 1] == oc) queue.add(r * column + c - 1);
}
}
}
}

LeetCode 733: 图像渲染 flood-fill的更多相关文章

  1. Java实现 LeetCode 733 图像渲染(DFS)

    733. 图像渲染 有一幅以二维整数数组表示的图画,每一个整数表示该图画的像素值大小,数值在 0 到 65535 之间. 给你一个坐标 (sr, sc) 表示图像渲染开始的像素值(行 ,列)和一个新的 ...

  2. [Swift]LeetCode733. 图像渲染 | Flood Fill

    An image is represented by a 2-D array of integers, each integer representing the pixel value of the ...

  3. Leetcode之深度优先搜索(DFS)专题-733. 图像渲染(Flood Fill)

    Leetcode之深度优先搜索(DFS)专题-733. 图像渲染(Flood Fill) 深度优先搜索的解题详细介绍,点击 有一幅以二维整数数组表示的图画,每一个整数表示该图画的像素值大小,数值在 0 ...

  4. 【LeetCode】733. Flood Fill 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 方法一:DFS 方法二:BFS 日期 题目地址:ht ...

  5. LN : leetcode 733 Flood Fill

    lc 733 Flood Fill 733 Flood Fill An image is represented by a 2-D array of integers, each integer re ...

  6. [LeetCode&Python] Problem 733. Flood Fill

    An image is represented by a 2-D array of integers, each integer representing the pixel value of the ...

  7. Leetcode733.Flood Fill图像渲染

    有一幅以二维整数数组表示的图画,每一个整数表示该图画的像素值大小,数值在 0 到 65535 之间. 给你一个坐标 (sr, sc) 表示图像渲染开始的像素值(行 ,列)和一个新的颜色值 newCol ...

  8. [LeetCode] Flood Fill 洪水填充

    An image is represented by a 2-D array of integers, each integer representing the pixel value of the ...

  9. 【Leetcode_easy】733. Flood Fill

    problem 733. Flood Fill 题意:图像处理中的泛洪填充算法,常见的有四邻域像素填充法.八邻域像素填充法.基于扫描线的像素填充法,实现方法分为递归与非递归(基于栈). 泛洪填充算法原 ...

随机推荐

  1. Kubernetes容器集群 - harbor仓库高可用集群部署说明

    之前介绍Harbor私有仓库的安装和使用,这里重点说下Harbor高可用集群方案的部署,目前主要有两种主流的Harbor高可用集群方案:1)双主复制:2)多harbor实例共享后端存储. 一.Harb ...

  2. Web前端——Html常用标签及属性

    html 常用的标题等标签就不记录了,只记录一下比较少见的标签以及属性 表格 table td 单元格 tr 表的行 th 表头 td或th可以下面的两个属性达到跨行或跨列 表格跨行 rowspan ...

  3. Redisson实现分布式锁(1)---原理

    Redisson实现分布式锁(1)---原理 有关Redisson作为实现分布式锁,总的分3大模块来讲. 1.Redisson实现分布式锁原理 2.Redisson实现分布式锁的源码解析 3.Redi ...

  4. springboot 2.0 配置 spring.jackson.date-format 不生效

    展开 问题:application.properties中的如下配置不生效,返回时间戳 spring.jackson.date-format=yyyy-MM-dd HH:mm:ss 原因分析: 拦截器 ...

  5. 利用Python突破验证码限制

    一.实验说明 本实验将通过一个简单的例子来讲解破解验证码的原理,将学习和实践以下知识点: Python基本知识 PIL模块的使用 二.实验内容 安装 pillow(PIL)库: $ sudo apt- ...

  6. Zuul 1.x 的工作原理

    Zuul简介 Zuul在微服务架构中,可以作为提供动态路由,监控,弹性,安全等边缘服务的框架.在Netflix,被用作所有请求到达streaming application的前门.Zuul使用一系列不 ...

  7. Winform中自定义ZedGraph右键复制成功后的提示

    场景 Winform中实现ZedGraph中曲线右键显示为中文: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/100115292 ...

  8. FCC---Learn How Bezier Curves Work---定义坐标轴点的值,影响斜率,改变速度。具体调试换值既可以体会

    The last challenge introduced the animation-timing-function property and a few keywords that change ...

  9. 74HC238引脚定义 使用方法

    三八译码器 用作IO扩展与复用 用3个IO,可以控制8个输出 引脚定义 A0~A2:3个输入 E1.E2:拉低使能,可以接地 E3:拉高使能,可以接VCC Y0~Y7:8个输出 真值表 如果想输出8个 ...

  10. Java 静态工厂模式的使用

    多相关文章请参考:http://www.enjoytoday.cn/categorys/java 静态工厂模式给人的第一印象就是:static+abstract.这两个词汇已经说明了一切,一个是周期长 ...