1.Spark Streaming功能介绍
1)定义
Spark Streaming is an extension of the core Spark API that enables scalable, high-throughput, fault-tolerant stream processing of live data streams

2.NC服务安装并运行Spark Streaming
1)在线安装nc命令
yum install -y nc
2)运行Spark Streaming 的WordCount
bin/run-example streaming.NetworkWordCount localhost 9999
3)把文件通过管道作为nc的输入,然后观察spark Streaming计算结果
cat test.txt | nc -lk 9999
文件具体内容
hadoop storm spark
hbase spark flume
spark dajiangtai spark
hdfs mapreduce spark
hive hdfs solr
spark flink storm
hbase storm es
3.Spark Streaming工作原理
1)Spark Streaming数据流处理

2)接收器工作原理

3)综合工作原理

4.Spark Streaming编程模型
1)StreamingContext初始化的两种方式
#第一种
val ssc = new StreamingContext(sc, Seconds(5))
#第二种
val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(1))
2)Spark Streaming socket代码
object NetworkWordCount {
def main(args: Array[String]) {
if (args.length < 2) {
System.err.println("Usage: NetworkWordCount ")
System.exit(1)
}

//创建StreamingContext,每秒钟计算一次
val sparkConf = new SparkConf().setAppName("NetworkWordCount")
val ssc = new StreamingContext(sparkConf, Seconds(1))

//监听网络端口,参数一:hostname 参数二:port 参数三:存储级别,创建了lines流
val lines = ssc.socketTextStream(args(0), args(1).toInt, StorageLevel.MEMORY_AND_DISK_SER)
//flatMap运算
val words = lines.flatMap(_.split(" "))
//map reduce 计算
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts.print()
ssc.start()
ssc.awaitTermination()
}
}
5.Spark Streaming读取Socket流数据
1)spark-shell运行Streaming程序,要么线程数大于1,要么基于集群。
bin/spark-shell --master local[2]
bin/spark-shell --master spark://bigdata-pro01.kfk.com:7077
2)spark 运行模式

3)Spark Streaming读取Socket流数据
a)编写测试代码,并本地运行
object TestStreaming {
def main(args: Array[String]) {
if (args.length < 2) {
System.err.println("Usage: NetworkWordCount ")
System.exit(1)
}

val spark=SparkSession.builder().master("local[2]").setAppName("streaming").getOrCreate()
val sc = spark.SparkContext

val ssc = new StreamingContext(sc, Seconds(5))

//监听网络端口,参数一:hostname 参数二:port 参数三:存储级别,创建了lines流
val lines = ssc.socketTextStream("igdata-pro02.kfk.com", 9999, StorageLevel.MEMORY_AND_DISK_SER)
//flatMap运算
val words = lines.flatMap(_.split(" "))
//map reduce 计算
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts.print()
ssc.start()
ssc.awaitTermination()
}
}
b)启动nc服务发送数据
nc -lk 9999
6.Spark Streaming保存数据到外部系统
1)保存到mysql数据库

2)保存到hdfs

7.Spark Streaming与Kafka集成
1)Maven引入相关依赖:spark-streaming-kafka
2)编写测试代码并启动运行
object StreamingKafka8 {

def main(args: Array[String]): Unit = {

val spark = SparkSession.builder()
.master("local[2]")
.appName("streaming").getOrCreate()

val sc =spark.sparkContext;
val ssc = new StreamingContext(sc, Seconds(5))

// Create direct kafka stream with brokers and topics
val topicsSet =Set("weblogs")
val kafkaParams = Map[String, String]("metadata.broker.list" -> "bigdata-pro01.kfk.com:9092")
val kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](
ssc, kafkaParams, topicsSet)

val lines = kafkaStream.map(x => x._2)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1L)).reduceByKey(_ + _)
wordCounts.print()

ssc.start()
ssc.awaitTermination()
}
}
3)启动Kafka服务并测试生成数据
bin/kafka-server-start.sh config/server.properties
bin/kafka-console-producer.sh --broker-list bigdata-pro01.kfk.com --topic weblogs

新闻实时分析系统 Spark Streaming实时数据分析的更多相关文章

  1. 新闻网大数据实时分析可视化系统项目——19、Spark Streaming实时数据分析

    1.Spark Streaming功能介绍 1)定义 Spark Streaming is an extension of the core Spark API that enables scalab ...

  2. Spark Streaming实时数据分析

    [kfk@bigdata-pro01 softwares]$ sudo rpm -ivh nc-.el6.x86_64.rpm Preparing... ####################### ...

  3. 新闻实时分析系统 SQL快速离线数据分析

    1.Spark SQL概述1)Spark SQL是Spark核心功能的一部分,是在2014年4月份Spark1.0版本时发布的. 2)Spark SQL可以直接运行SQL或者HiveQL语句 3)BI ...

  4. 【转】Spark Streaming 实时计算在甜橙金融监控系统中的应用及优化

    系统架构介绍 整个实时监控系统的架构是先由 Flume 收集服务器产生的日志 Log 和前端埋点数据, 然后实时把这些信息发送到 Kafka 分布式发布订阅消息系统,接着由 Spark Streami ...

  5. Spark Streaming实时计算框架介绍

    随着大数据的发展,人们对大数据的处理要求也越来越高,原有的批处理框架MapReduce适合离线计算,却无法满足实时性要求较高的业务,如实时推荐.用户行为分析等. Spark Streaming是建立在 ...

  6. 【Streaming】30分钟概览Spark Streaming 实时计算

    本文主要介绍四个问题: 什么是Spark Streaming实时计算? Spark实时计算原理流程是什么? Spark 2.X下一代实时计算框架Structured Streaming Spark S ...

  7. Spark练习之通过Spark Streaming实时计算wordcount程序

    Spark练习之通过Spark Streaming实时计算wordcount程序 Java版本 Scala版本 pom.xml Java版本 import org.apache.spark.Spark ...

  8. 用户点击行为实时分析系统spark

    系统设计技术有:Hadoop2.xZookeeperFlumeHiveHbaseKafkaSpark2.xSpark StreamingStructured StreamingMySQLHueJava ...

  9. 大数据Spark+Kafka实时数据分析案例

    本案例利用Spark+Kafka实时分析男女生每秒购物人数,利用Spark Streaming实时处理用户购物日志,然后利用websocket将数据实时推送给浏览器,最后浏览器将接收到的数据实时展现, ...

随机推荐

  1. 设置H5页面文字不可复制

    * { moz-user-select: -moz-none; -moz-user-select: none; -o-user-select: none; -khtml-user-select: no ...

  2. beanfactory中单例bean的初始化过程(一)

    Date 10.06 pm Point 完成beanfactory中单例bean的初始化 beanFactory.preInstantiateSingletons() 拿到所有的bean定义信息(在 ...

  3. Prism - MVVM模式下,StackPanel中增加和删除View(UserControl)

    一.现实效果 在学习Prim,看官方的例子 03-CustomRegions 只是一个简单演示,这里用MVVM方式做个了相对完整的例子,实现效果如图: 点击Add,右侧StackPanel中增加一个V ...

  4. vue-route动态路由

    配置子路由: 路由的视图都需要使用view-router 子路由也可以嵌套路由使用: children来做嵌套如上图 使用location.页面name就可以做页面跳转 mounted:挂载,延迟跳转 ...

  5. 解决axios发送post请求,后端接收不到数据

    https://segmentfault.com/a/1190000012635783

  6. ubuntu18.04 flink-1.9.0 Standalone集群搭建

    集群规划 Master JobManager Standby JobManager Task Manager Zookeeper flink01 √ √ flink02 √ √ flink03 √ √ ...

  7. Unity5-ABSystem(一):AssetBundle原理

    转载自:http://blog.csdn.net/lodypig/article/details/51863683 说明 AssetBundle简介 AssetBundle内部格式 normal bu ...

  8. JVM垃圾收集策略与算法

    垃圾收集策略与算法 程序计数器.虚拟机栈.本地方法栈随线程而生,也随线程而灭:栈帧随着方法的开始而入栈,随着方法的结束而出栈.这几个区域的内存分配和回收都具有确定性,在这几个区域内不需要过多考虑回收的 ...

  9. 【已解决】ArcGIS Engine无法创建拓扑的问题(CreateTopology)

    也许,你的问题是这样的 ①System.Runtime.InteropServices.COMException:"未找到拓扑." ②myTopology结果是null,程序跳转到 ...

  10. 学习笔记63_python反射

    ####反射预备知识一########### __call__ 对象后面加括号,触发执行. python中,类的默认的内置方法,有一个名为__call__,如 class foo: def  __in ...