http://acm.hdu.edu.cn/showproblem.php?pid=4059

题意:给出一个n,求1~n里面与n互质的数的四次方的和是多少。

思路;不知道1~n的每个数的四次方的求和公式。看的是这篇:http://blog.csdn.net/acm_cxlove/article/details/7434864

求和公式:(1^4+2^4+……+n^4)=(n*(n+1)*(2n+1)*(3*n*n+3*n-1))/30;

然后先求出1~n的每个数的四次方的求和,然后再减去n的因子的四次方的求和。

把n的因子的质因子找出来,然后使用容斥原理去做。

容斥原理里面有一个点:例如要求所有2的倍数的因子,n是8的话,就有因子2,4,6,8,求这些的四次方的和就可以转化为2 ^ 4 * (1 ^ 4 + 2 ^ 4 + 3 ^ 4 + 4 ^ 4)。就是f_pow(prime[i], 4) * calsum(n / prime[i])。

除以30就是乘以30的逆元,就是f_pow(30, MOD-2);

 #include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MOD = 1e9 + ;
const int N = 1e5 + ;
// (1^4+2^4+……+n^4)=(n*(n+1)*(2n+1)*(3*n*n+3*n-1))/30;
LL inver, n;
int prime[N], not_prime[N], cnt;
vector<LL> fac; void Biao() {
cnt = ;
for(int i = ; i <= N; i++) {
if(not_prime[i]) continue;
prime[cnt++] = i;
for(int j = * i; j <= N; j += i) not_prime[j] = ;
}
} LL f_pow(LL a, LL b) {
LL ans = ;
a %= MOD, b %= MOD;
while(b) {
if(b & ) ans = ans * a % MOD;
a = a * a % MOD;
b >>= ;
}
return ans % MOD;
} LL calsum(LL n) {
LL ans = n;
ans = ans * ((n + ) % MOD) % MOD;
ans = ans * (( * n + ) % MOD) % MOD;
ans = ans * ((( * n * n % MOD) + ( * n % MOD) - + MOD) % MOD) % MOD;
ans = ans * inver % MOD;
return ans;
} void solve() {
fac.clear();
LL tmp = n;
for(int i = ; i < cnt; i++) {
if(tmp % prime[i] == ) {
fac.push_back(prime[i]);
while(tmp % prime[i] == ) tmp /= prime[i];
}
}
if(tmp > ) fac.push_back(tmp);
LL ans = calsum(n);
int sz = fac.size();
for(int st = ; st < ( << sz); st++) {
int num = , bit = ; LL now = ;
while(( << bit) <= st) {
if(st & ( << bit)) num++, now *= fac[bit];
bit++;
}
LL res = f_pow(now, 4LL) * (calsum(n / now) % MOD) % MOD;
if(num % ) ans = (ans - res + MOD) % MOD;
else ans = (ans + res + MOD) % MOD;
}
printf("%lld\n", ans);
} int main() {
inver = f_pow(30LL, MOD - );
// printf("%lld\n", inver);
Biao();
int t; scanf("%d", &t);
while(t--) {
scanf("%lld", &n);
solve();
}
return ;
}

HDU 4059:The Boss on Mars(数学公式+容斥原理)的更多相关文章

  1. HDU 4059 The Boss on Mars(容斥原理)

    The Boss on Mars Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  2. HDU 4059 The Boss on Mars 容斥原理

    The Boss on Mars Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  3. HDU 4059 The Boss on Mars(容斥原理 + 四次方求和)

    传送门 The Boss on Mars Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  4. hdu 4059 The Boss on Mars

    The Boss on Mars Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  5. 数论 + 容斥 - HDU 4059 The Boss on Mars

    The Boss on Mars Problem's Link Mean: 给定一个整数n,求1~n中所有与n互质的数的四次方的和.(1<=n<=1e8) analyse: 看似简单,倘若 ...

  6. hdu 4059 The Boss on Mars(纳入和排除)

    http://acm.hdu.edu.cn/showproblem.php?pid=4059 定义S = 1^4 + 2^4 + 3^4+.....+n^4.如今减去与n互质的数的4次方.问共降低了多 ...

  7. hdu 4059 The Boss on Mars 容斥

    题目链接 求出ai^4+a2^4+......an^4的值, ai为小于n并与n互质的数. 用容斥做, 先求出1^4+2^4+n^4的和的通项公式, 显然是一个5次方程, 然后6个方程6个未知数, 我 ...

  8. hdu4059 The Boss on Mars(差分+容斥原理)

    题意: 求小于n (1 ≤ n ≤ 10^8)的数中,与n互质的数的四次方和. 知识点: 差分: 一阶差分: 设  则    为一阶差分. 二阶差分: n阶差分:     且可推出    性质: 1. ...

  9. HDU 4059 容斥原理+快速幂+逆元

    E - The Boss on Mars Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64 ...

  10. The Boss on Mars

    The Boss on Mars Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

随机推荐

  1. SQL_DML简单的操作

    ***********************************************声明*************************************************** ...

  2. DevOps技术路线图

    来自roadmap.sh github地址 自己整理的百度脑图中文版

  3. sql server DateTime与DateTime2的区别

    DateTime字段类型对应的时间格式是 yyyy-MM-dd HH:mm:ss.fff ,3个f,精确到1毫秒(ms),示例 2014-12-03 17:06:15.433 .DateTime2字段 ...

  4. WPF刷新界面

    Winform 里有 Application.DoEvents();可刷新! WPF 里没这个,尽管可用委托实现多线程,但是刷新还是不行! 后来找到了 类似App.DoEvents()的方法(): 代 ...

  5. Nancy Web框架

    原文 Nancy Web框架 Nancy框架 一.创建第一个Nancy应用 二.探索Nancy的module 1. 模块能够在全局被发现 2. 使用模块为路由创建一个根 三.定义路由 1. 方法 2. ...

  6. 关于"云服务器被检测到对外攻击已阻断该服务器对其它服务器端口的访问"的解决措施

    前段时间阿里云大量发送云服务器对外攻击的信息到邮箱中,邮件信息大概如下: 您的云服务器(XX.XX.XX.XX)由于被检测到对外攻击,已阻断该服务器对其它服务器端口(TCP:XX)的访问,阻断预计将在 ...

  7. vs2015 cordova环境安装【个人遇到的几个问题】

    原文:vs2015 cordova环境安装[个人遇到的几个问题] 问题1: vs2015,设置  Debug  Android 设备[真机调试] Exception in thread "m ...

  8. ReportViewer,RDLC 报表开发之个性化样式

    原文:ReportViewer,RDLC 报表开发之个性化样式 报表开发中,客户对样式提出了要求: 1.工具栏上显示每页条数 2.只导出Excel,不需要下拉菜单. 3.报表上显示的图表,分页时,每页 ...

  9. 零元学Expression Blend 4 - Chapter 16 用实例了解互动控制项「Button」II

    原文:零元学Expression Blend 4 - Chapter 16 用实例了解互动控制项「Button」II 本章将教大家如何制作自己的Button,并以玻璃质感Button为实作案例. ? ...

  10. 16.09 working note

    这个月最主要任务是linux shell script学习. 其次是继续spring源码学习. 其余时间C.C++和Java学习. 01 9月第一天,9点多才到家.做道简单的oj题练习下.因为简单,所 ...