CodeForces1006F-Xor-Paths
F. Xor-Paths
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
There is a rectangular grid of size n×mn×m. Each cell has a number written on it; the number on the cell (i,ji,j) is ai,jai,j. Your task is to calculate the number of paths from the upper-left cell (1,11,1) to the bottom-right cell (n,mn,m) meeting the following constraints:
- You can move to the right or to the bottom only. Formally, from the cell (i,ji,j) you may move to the cell (i,j+1i,j+1) or to the cell (i+1,ji+1,j). The target cell can't be outside of the grid.
- The xor of all the numbers on the path from the cell (1,11,1) to the cell (n,mn,m) must be equal to kk (xor operation is the bitwise exclusive OR, it is represented as '^' in Java or C++ and "xor" in Pascal).
Find the number of such paths in the given grid.
Input
The first line of the input contains three integers nn, mm and kk (1≤n,m≤201≤n,m≤20, 0≤k≤10180≤k≤1018) — the height and the width of the grid, and the number kk.
The next nn lines contain mm integers each, the jj-th element in the ii-th line is ai,jai,j (0≤ai,j≤10180≤ai,j≤1018).
Output
Print one integer — the number of paths from (1,11,1) to (n,mn,m) with xor sum equal to kk.
Examples
input
Copy
3 3 11
2 1 5
7 10 0
12 6 4
output
Copy
3
input
Copy
3 4 2
1 3 3 3
0 3 3 2
3 0 1 1
output
Copy
5
input
Copy
3 4 1000000000000000000
1 3 3 3
0 3 3 2
3 0 1 1
output
Copy
0
Note
All the paths from the first example:
- (1,1)→(2,1)→(3,1)→(3,2)→(3,3)(1,1)→(2,1)→(3,1)→(3,2)→(3,3);
- (1,1)→(2,1)→(2,2)→(2,3)→(3,3)(1,1)→(2,1)→(2,2)→(2,3)→(3,3);
- (1,1)→(1,2)→(2,2)→(3,2)→(3,3)(1,1)→(1,2)→(2,2)→(3,2)→(3,3).
All the paths from the second example:
- (1,1)→(2,1)→(3,1)→(3,2)→(3,3)→(3,4)(1,1)→(2,1)→(3,1)→(3,2)→(3,3)→(3,4);
- (1,1)→(2,1)→(2,2)→(3,2)→(3,3)→(3,4)(1,1)→(2,1)→(2,2)→(3,2)→(3,3)→(3,4);
- (1,1)→(2,1)→(2,2)→(2,3)→(2,4)→(3,4)(1,1)→(2,1)→(2,2)→(2,3)→(2,4)→(3,4);
- (1,1)→(1,2)→(2,2)→(2,3)→(3,3)→(3,4)(1,1)→(1,2)→(2,2)→(2,3)→(3,3)→(3,4);
- (1,1)→(1,2)→(1,3)→(2,3)→(3,3)→(3,4)(1,1)→(1,2)→(1,3)→(2,3)→(3,3)→(3,4).
Codeforces (c) Copyright 2010-2018 Mike Mirzayanov
The only programming contests Web 2.0 platform
Server time: Jul/18/2018 00:56:41UTC+8 (d2).
Desktop version, switch to mobile version.
题解:提议很好理解,寻找从(1,1)到(n,m)异或为K的路径有多少条;因为n,m<=20;暴力搜索即可DFS,可以双向DFS;
AC代码为:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int n, m;
unordered_map<ll,ll> mp[21];
ll ans, k, a[21][21];
void dfs1(int i, int j, ll v)
{
v ^= a[i][j];
if(i+j == n+1)
{
++mp[i][v];
return ;
}
if(i<n) dfs1(i+1, j,v);
if(j<m) dfs1(i,j+1, v);
}
void dfs2(int i, int j, ll v)
{
if(i+j == n+1)
{
ans += mp[i][v^k];
return ;
}
v ^= a[i][j];
if(i > 1) dfs2(i-1, j, v);
if(j > 1) dfs2(i, j-1, v);
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n>>m>>k;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++) cin>>a[i][j];
}
dfs1(1,1,0); dfs2(n, m, 0);
cout<<ans<<endl;
return 0;
}
CodeForces1006F-Xor-Paths的更多相关文章
- Codeforces Round #498 (Div. 3) 简要题解
[比赛链接] https://codeforces.com/contest/1006 [题解] Problem A. Adjacent Replacements [算法] 将序列中的所有 ...
- CF 741D. Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths [dsu on tree 类似点分治]
D. Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths CF741D 题意: 一棵有根树,边上有字母a~v,求每个子树中最长的边,满 ...
- CF741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths
CF741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths 好像这个题只能Dsu On Tree? 有根树点分治 统计子树过x的 ...
- codeforces 741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths
题目链接:Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths 第一次写\(dsu\ on\ tree\),来记录一下 \(dsu\ o ...
- Codeforces Round #396 (Div. 2) E. Mahmoud and a xor trip
地址:http://codeforces.com/contest/766/problem/E 题目: E. Mahmoud and a xor trip time limit per test 2 s ...
- codeforces766E Mahmoud and a xor trip(按位统计+树形DP)
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- [LeetCode] Maximum XOR of Two Numbers in an Array 数组中异或值最大的两个数字
Given a non-empty array of numbers, a0, a1, a2, … , an-1, where 0 ≤ ai < 231. Find the maximum re ...
- [LeetCode] Binary Tree Paths 二叉树路径
Given a binary tree, return all root-to-leaf paths. For example, given the following binary tree: 1 ...
- [LeetCode] Unique Paths II 不同的路径之二
Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...
- [LeetCode] Unique Paths 不同的路径
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
随机推荐
- RHEL7-Vsftpd匿名用户
实现:匿名用户创建目录,可以上传.下载文件,但是不可删除文件,禁止本地用户登陆. Vsftpd.conf部分参数 第一步:虚拟机挂载镜像 略 第二步:执行挂载命令 略 第三步:编写yum仓库文件 略 ...
- Md5实例
MD5实例 我的md5源码 当我们对数据进行操作时,存储到数据库时,有时候不希望别人能够看到,通过md5能够实现对数据的加密. java代码 ```javaimport org.springframe ...
- linux系统LAMP环境部署
一.安装虚拟机 二.安装CentOS7 注意:以下安装,用的root权限. 三.安装Apache 1.安装 yum -y install httpd 2.开启apache服务 systemctl st ...
- C# III: 数据库基本操作
用C#操作数据库——数据库使用SQL Server为例,对应的namespace是System.Data.SqlClient. 读取数据 从数据库中读取数据是最基本的操作了. 示例代码如下: Stri ...
- spark集群搭建(三台虚拟机)——zookeeper集群搭建(3)
!!!该系列使用三台虚拟机搭建一个完整的spark集群,集群环境如下: virtualBox5.2.Ubuntu14.04.securecrt7.3.6_x64英文版(连接虚拟机) jdk1.7.0. ...
- Spring Boot2 系列教程(二十六)Spring Boot 整合 Redis
在 Redis 出现之前,我们的缓存框架各种各样,有了 Redis ,缓存方案基本上都统一了,关于 Redis,松哥之前有一个系列教程,尚不了解 Redis 的小伙伴可以参考这个教程: Redis 教 ...
- linux下制作linux系统盘(光盘、U盘)
cdrecord制作启动光盘 首先cdrecord -scanbus输出设备列表和标识,(我的此次为5,0,0) [ˈrekərd] 然后用cdrecord -v dev=5,0,0 -eject ...
- 用例建模Use Case Modeling
我的工程实践选题为ESP32低功耗的实现,本项目基于ESP32嵌入式开发平台. 以此题为例,在理解项目需求的基础上进行用例建模,抽取Abstract use case,画出用例图,并确定每一个用例的范 ...
- DNS简单配置
——主要执行的程序:/usr/sbin/named ——系统服务:named ——默认端口:53 ——运行时的虚拟根环境:/var/named/chroot ——主配置文件:/etc/named.co ...
- beta 2/2 阶段中间产物提交
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2019fall/homework/9961 一.小组情况 队名:扛把子 组长:孙晓宇 组员:宋晓丽 梁梦瑶 韩 ...