一、声明

在下面的描述中,未说明的情况下,\(N\) 是顶点数,\(M\)是边数。

二、判负环算法盘点

想到判负环,我们会想到很多的判负环算法。例如:

1. Bellman-Ford 判负环

这个算法在众多算法中最为经典,复杂度 \(O(N\times M)\)

2. SPFA 判负环

然而,这个算法是 Bellman-Ford 算法的队列优化版,这最短路方面卓有成效,但在判负环方面不见得有多少快。尽管在有负环的情况下会快很多,期望复杂度达到了 \(O(K\times M)\) (\(K\)是常数);但在没有负环的情况下,SPFA 算法会退化到 \(O(N\times M)\) 。

难道判负环的复杂度就由此停步于 \(O(N\times M)\) 之前吗?

不,还有办法的!

办法之一:SPFA之dfs版

3. SPFA_dfs 判负环

这个算法挺 科♂学 的,利用了 SPFA_dfs 可以迅速使大量节点得到更新,因此也更容易找到负环。然而,SPFA_dfs 死于不日前更新的毒瘤数据手里。

不要着急,我们还有办法!

4. 带卡界的 SPFA 算法

我们想到,在有负环的情况下,SPFA 判负环的时间复杂度是期望 \(O(M)\) 的,非常的快。那么反过来,效率低下是否就代表没有负环?

答案是肯定的!✔

假设入队操作超过了 \(T(N + M)\) 次,那么就认为没有负环。(\(T\) 一般取 \(2\))

$\large B!\space U!\space T!\space $

我们 WA 了!

所以放弃,回去用SPFA_bfs版 ✖

不!我们发现 11 个数据点只 WA 了 1 个点 (#9) ,还是比较不错的,所以我们想到增加 \(T\)。

我选择将数据下载了下来,在本地跑,经过二分,得出数据点#9的T最小是 \(K = 20.076030\space (eps=1^{-6})\) (少 \(0.000001\) 都不行)

然后就过了。

有点不太保险????

不过可以开大 \(T\) 啊!

下表给出了几组 \(T\) 的值对应的情况:

\(T\) 分值 时间消耗(ms) 对应评测记录id
2 91 58 R16135858
20.076030 100 198 R16135998
30 100 270 R16136029
100 100 754 R16136756
300 100 2071 R16136864

实际上耗时都不大。

实际上运用建议开 \(T = 2\) (一般没人卡这种算法【注:卡的方法点击箭头了解】如果你真的怕被卡,\(T\) 开大点也没事~~毕竟最多12个TLE~)

三、代码

#include <queue>
#include <cstdio>
#include <cstring>
using namespace std; inline int readint()
{
int flag = 1;
char c = getchar();
while ((c > '9' || c < '0') && c != '-')
c = getchar();
if (c == '-') flag = -1, c = getchar();
int init = c ^ '0';
while ((c = getchar()) <= '9' && c >= '0')
init = (init << 3) + (init << 1) + (c ^ '0');
return init * flag;
} struct Edge {
int v, w;
int nxt;
Edge() {}
Edge(int _v, int _w, int _nxt) : v(_v), w(_w), nxt(_nxt) {}
} edges[6007];
// 链式前向星存图
int top = 1;
int n, m; int head[2007] = {0};
int dis[2007] = {0};
bool inqueue[2007] = {0}; inline void add_edge(int u, int v, int w) // 单次加边操作
{
edges[top] = Edge(v, w, head[u]);
head[u] = top++;
} inline void add(int u, int v, int w) // 加边操作
{
add_edge(u, v, w);
if (w >= 0) add_edge(v, u, w);
} const double K = 20.076030; // 即题解中所说的 "T"
bool SPFA_bfs()
{
queue <int> q;
q.push(1);
inqueue[1] = 1;
int times = 0;
while (!q.empty()) {
times++;
if (times > K * (n + m)) return 1;
// 以上两行:卡界
int n = q.front(); q.pop();
inqueue[n] = 0;
for (int i = head[n]; i != -1; i = edges[i].nxt) {
Edge &e = edges[i];
if (dis[e.v] > dis[n] + e.w) {
dis[e.v] = dis[n] + e.w;
if (!inqueue[e.v]) q.push(e.v);
}
}
}
return 0;
} void van()
{
n = readint();
m = readint();
top = 1;
memset(head, -1, sizeof(head));
memset(dis, 0x3f, sizeof(dis));
memset(inqueue, 0, sizeof(inqueue));
dis[1] = 0;
register int ui, vi, wi;
for (register int i = 1; i <= m; i++) {
ui = readint();
vi = readint();
wi = readint();
add(ui, vi, wi);
}
if (SPFA_bfs()) puts("YE5");
else puts("N0");
} int main()
{
register int T = readint();
while (T--) van();
return 0;
}

洛谷 题解 P3385 【【模板】负环】的更多相关文章

  1. 洛谷P3385 [模板]负环 [SPFA]

    题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个 ...

  2. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  3. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  4. 洛谷P1919 【模板】A*B Problem升级版 题解(FFT的第一次实战)

    洛谷P1919 [模板]A*B Problem升级版(FFT快速傅里叶) 刚学了FFT,我们来刷一道模板题. 题目描述 给定两个长度为 n 的两个十进制数,求它们的乘积. n<=100000 如 ...

  5. 洛谷P3387 【模板】缩点 题解

    背景 今天\(loj\)挂了,于是就有了闲情雅致来刷\(luogu\) 题面 洛谷P3387 [模板]缩点传送门 题意 给定一个\(n\)个点\(m\)条边有向图,每个点有一个权值,求一条路径,使路径 ...

  6. 洛谷p3384【模板】树链剖分题解

    洛谷p3384 [模板]树链剖分错误记录 首先感谢\(lfd\)在课上调了出来\(Orz\) \(1\).以后少写全局变量 \(2\).线段树递归的时候最好把左右区间一起传 \(3\).写\(dfs\ ...

  7. 洛谷P3377 【模板】左偏树(可并堆) 题解

    作者:zifeiy 标签:左偏树 这篇随笔需要你在之前掌握 堆 和 二叉树 的相关知识点. 堆支持在 \(O(\log n)\) 的时间内进行插入元素.查询最值和删除最值的操作.在这里,如果最值是最小 ...

  8. 洛谷 P3384 【模板】树链剖分-树链剖分(点权)(路径节点更新、路径求和、子树节点更新、子树求和)模板-备注结合一下以前写的题目,懒得写很详细的注释

    P3384 [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节 ...

  9. 洛谷 P3387 【模板】缩点 DAGdp学习记

    我们以洛谷P3387 [模板]缩点 来学习DAGdp 1.这道题的流程 //伪代码 for i->n if(i未被遍历) tarjan(i) 缩点() DAGdp() 完成 首先tarjan这部 ...

随机推荐

  1. [LC]643题 Maximum Average Subarray I(子数组最大平均数 I)

    ①英文题目 Given an array consisting of n integers, find the contiguous subarray of given length k that h ...

  2. VS链接文件设置

    右键点击文件夹,添加现有项,选中文件,添加为链接 ,点击确定,那么在修改源文件后这个目录的文件也会同步修改.如果更改源文件目录,就需要重新指定一次链接.

  3. spark安装配置

    一.下载解压 二.配置 (假设已经配置了Java.Hadoop) 1.环境变量 2.spark配置 进入spark安装目录,复制文件 编辑spark-env.sh文件,在文件中添加如下信息(括号中路径 ...

  4. asp.net以流导出Excel

    废话不多说,直接上代码 这是点击导出的事件函数,因为我是从前端获取的Table的json数据,所以需要转换一下,大家直接用查询出来的DataTable即可 protected void bt_expo ...

  5. 简单地迁移你的android jni代码逻辑到iOS - 编写iOS下jni.h的替代 - ocni.h

    1. jni的代码逻辑中与上层平台语言交互了. 2. 使用非Xcode的ide开发工具,希望使用纯净的c/c++代码,不掺杂其它平台相关的语言语法. 3. 只想简单地替换jni代码对上层平台语言的功能 ...

  6. convert svn repo to git

    https://john.albin.net/git/convert-subversion-to-git 1. 抓取Log 在linux 上做的,其余是在win上做的. 2. svn co svn:/ ...

  7. [FPGA]Verilog实现寄存器LS374

    目录 想说的话... 正文 IC介绍 电路连接图 功能表 逻辑图 实验原理 单元实现_D触发器 整体实现(完整代码) 想说的话... 不久前正式开通了博客,以后有空了会尽量把自己学习过程中的心得或者感 ...

  8. 看了这篇Redis,我以大专生的身份,进入了阿里,定级P7

    摘要: 前几天讲了Redis的面试知识点,当然那只是一部分,我相信各位在面试,或者实际开发过程中对缓存雪崩,穿透,击穿也不陌生吧,就算没遇到过但是你肯定听过,那三者到底有什么区别,我们又应该怎么去防止 ...

  9. JSONPath入门之Snack3篇

    Snack3 for java 一个微型JSON框架 基于jdk8,60kb.有序列化反序列化.解析和转换.支持 Json path 查询. <dependency> <groupI ...

  10. 【Java并发系列】----JUC之Lock

    显式锁 Lock 在Java 5.0之前,协调共享对象的访问时可以使用的机制只有synchronized和volatile.Java 5.0后增加了一些新的机制,但并不是一种替代内置锁的方法,而是当内 ...