洛谷 题解 P3385 【【模板】负环】
一、声明
在下面的描述中,未说明的情况下,\(N\) 是顶点数,\(M\)是边数。
二、判负环算法盘点
想到判负环,我们会想到很多的判负环算法。例如:
1. Bellman-Ford 判负环
这个算法在众多算法中最为经典,复杂度 \(O(N\times M)\)
2. SPFA 判负环
然而,这个算法是 Bellman-Ford 算法的队列优化版,这最短路方面卓有成效,但在判负环方面不见得有多少快。尽管在有负环的情况下会快很多,期望复杂度达到了 \(O(K\times M)\) (\(K\)是常数);但在没有负环的情况下,SPFA 算法会退化到 \(O(N\times M)\) 。
难道判负环的复杂度就由此停步于 \(O(N\times M)\) 之前吗?
不,还有办法的!
办法之一:SPFA之dfs版
3. SPFA_dfs 判负环
这个算法挺 科♂学 的,利用了 SPFA_dfs 可以迅速使大量节点得到更新,因此也更容易找到负环。然而,SPFA_dfs 死于不日前更新的毒瘤数据手里。
不要着急,我们还有办法!
4. 带卡界的 SPFA 算法
我们想到,在有负环的情况下,SPFA 判负环的时间复杂度是期望 \(O(M)\) 的,非常的快。那么反过来,效率低下是否就代表没有负环?
答案是肯定的!✔
假设入队操作超过了 \(T(N + M)\) 次,那么就认为没有负环。(\(T\) 一般取 \(2\))
$\large B!\space U!\space T!\space $
我们 WA 了!
所以放弃,回去用SPFA_bfs版 ✖
不!我们发现 11 个数据点只 WA 了 1 个点 (#9) ,还是比较不错的,所以我们想到增加 \(T\)。
我选择将数据下载了下来,在本地跑,经过二分,得出数据点#9的T最小是 \(K = 20.076030\space (eps=1^{-6})\) (少 \(0.000001\) 都不行)
然后就过了。
有点不太保险????
不过可以开大 \(T\) 啊!
下表给出了几组 \(T\) 的值对应的情况:
\(T\) | 分值 | 时间消耗(ms) | 对应评测记录id |
---|---|---|---|
2 | 91 | 58 | R16135858 |
20.076030 | 100 | 198 | R16135998 |
30 | 100 | 270 | R16136029 |
100 | 100 | 754 | R16136756 |
300 | 100 | 2071 | R16136864 |
实际上耗时都不大。
实际上运用建议开 \(T = 2\) (一般没人卡这种算法【注:卡的方法点击箭头了解⤴】如果你真的怕被卡,\(T\) 开大点也没事~~毕竟最多12个TLE~)
三、代码
#include <queue>
#include <cstdio>
#include <cstring>
using namespace std;
inline int readint()
{
int flag = 1;
char c = getchar();
while ((c > '9' || c < '0') && c != '-')
c = getchar();
if (c == '-') flag = -1, c = getchar();
int init = c ^ '0';
while ((c = getchar()) <= '9' && c >= '0')
init = (init << 3) + (init << 1) + (c ^ '0');
return init * flag;
}
struct Edge {
int v, w;
int nxt;
Edge() {}
Edge(int _v, int _w, int _nxt) : v(_v), w(_w), nxt(_nxt) {}
} edges[6007];
// 链式前向星存图
int top = 1;
int n, m;
int head[2007] = {0};
int dis[2007] = {0};
bool inqueue[2007] = {0};
inline void add_edge(int u, int v, int w) // 单次加边操作
{
edges[top] = Edge(v, w, head[u]);
head[u] = top++;
}
inline void add(int u, int v, int w) // 加边操作
{
add_edge(u, v, w);
if (w >= 0) add_edge(v, u, w);
}
const double K = 20.076030; // 即题解中所说的 "T"
bool SPFA_bfs()
{
queue <int> q;
q.push(1);
inqueue[1] = 1;
int times = 0;
while (!q.empty()) {
times++;
if (times > K * (n + m)) return 1;
// 以上两行:卡界
int n = q.front(); q.pop();
inqueue[n] = 0;
for (int i = head[n]; i != -1; i = edges[i].nxt) {
Edge &e = edges[i];
if (dis[e.v] > dis[n] + e.w) {
dis[e.v] = dis[n] + e.w;
if (!inqueue[e.v]) q.push(e.v);
}
}
}
return 0;
}
void van()
{
n = readint();
m = readint();
top = 1;
memset(head, -1, sizeof(head));
memset(dis, 0x3f, sizeof(dis));
memset(inqueue, 0, sizeof(inqueue));
dis[1] = 0;
register int ui, vi, wi;
for (register int i = 1; i <= m; i++) {
ui = readint();
vi = readint();
wi = readint();
add(ui, vi, wi);
}
if (SPFA_bfs()) puts("YE5");
else puts("N0");
}
int main()
{
register int T = readint();
while (T--) van();
return 0;
}
洛谷 题解 P3385 【【模板】负环】的更多相关文章
- 洛谷P3385 [模板]负环 [SPFA]
题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个 ...
- 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...
- 题解-洛谷P4724 【模板】三维凸包
洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...
- 洛谷P1919 【模板】A*B Problem升级版 题解(FFT的第一次实战)
洛谷P1919 [模板]A*B Problem升级版(FFT快速傅里叶) 刚学了FFT,我们来刷一道模板题. 题目描述 给定两个长度为 n 的两个十进制数,求它们的乘积. n<=100000 如 ...
- 洛谷P3387 【模板】缩点 题解
背景 今天\(loj\)挂了,于是就有了闲情雅致来刷\(luogu\) 题面 洛谷P3387 [模板]缩点传送门 题意 给定一个\(n\)个点\(m\)条边有向图,每个点有一个权值,求一条路径,使路径 ...
- 洛谷p3384【模板】树链剖分题解
洛谷p3384 [模板]树链剖分错误记录 首先感谢\(lfd\)在课上调了出来\(Orz\) \(1\).以后少写全局变量 \(2\).线段树递归的时候最好把左右区间一起传 \(3\).写\(dfs\ ...
- 洛谷P3377 【模板】左偏树(可并堆) 题解
作者:zifeiy 标签:左偏树 这篇随笔需要你在之前掌握 堆 和 二叉树 的相关知识点. 堆支持在 \(O(\log n)\) 的时间内进行插入元素.查询最值和删除最值的操作.在这里,如果最值是最小 ...
- 洛谷 P3384 【模板】树链剖分-树链剖分(点权)(路径节点更新、路径求和、子树节点更新、子树求和)模板-备注结合一下以前写的题目,懒得写很详细的注释
P3384 [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节 ...
- 洛谷 P3387 【模板】缩点 DAGdp学习记
我们以洛谷P3387 [模板]缩点 来学习DAGdp 1.这道题的流程 //伪代码 for i->n if(i未被遍历) tarjan(i) 缩点() DAGdp() 完成 首先tarjan这部 ...
随机推荐
- IO类
Java的IO体系分为Input/Output和Reader/Writer两类,区别在于Reader/Writer在读写文本时能自动转换内码.基本上,所有的IO类多是配对的,即有XXXInput,就有 ...
- NioEventLoop的创建
NioEventLoop的创建 NioEventLoop是netty及其重要的组成部件,它的首要职责就是为注册在它上的channels服务,发现这些channels上发生的新连接.读写等I/O事件,然 ...
- (十七)golang--闭包(简单明了)
所谓闭包:就是一个函数和其相关的引用环境组合的一个整体: 首先,有如下一个小例子,最终的输出结果是什么呢?是输出11,12吗? 对上述代码说明:(1)addUpper是一个函数,返回的是func(in ...
- 云计算时代,你所不了解的 DevOps
在本文中,我们讨论如何快速地从更高的层面理解DevOps,介绍准备改变文化的最佳实践.我们将讨论DevOps的目标以及从组织管理层得到支持的方法,为DevOps的概念打下基础.我们将试着从根本上介绍使 ...
- pat 1149 Dangerous Goods Packaging(25 分)
1149 Dangerous Goods Packaging(25 分) When shipping goods with containers, we have to be careful not ...
- nyoj 484-The Famous Clock
484-The Famous Clock 内存限制:64MB 时间限制:1000ms 特判: No 通过数:2 提交数:2 难度:1 题目描述: Mr. B, Mr. G and Mr. M are ...
- JavaWeb核心知识点
一:HTTP协议 一.概述 1. 概念:超文本传输协议 2. 作用:规范了客户端(浏览器)和服务器的数据交互格式 3. 特点 1. 简单快速:客户端向服务器请求服务时,仅通过键值对来传输请求方 ...
- Nginx 匹配流程一览
在 nginx server 模块中,location 的定义长被用来匹配一个标准的 URI, 并根据 URI 的不同做出相应的服务方案. nginx location 匹配的优先级 在 locati ...
- zip的压缩和解压命令
以下命令均在/home目录下操作cd /home #进入/home目录 1.把/home目录下面的data目录压缩为data.zip zip -r data.zip data #压缩data目录 ...
- MySQL 、PDO对象
目录 1, singleton 2, pdo与db 3, singleton获取pdo 4, pdo实现db增删改查 5, pdo异常处理exception 6, pdo预处理prepare 7, p ...