题意

有一个只包含1和2的序列,试翻转一个区间,使得结果中非连续非递减数列最长。

思路

一、

作出1的前缀计数和为cnt1,2的后缀计数和为cnt2, 由于要找出【1,1,1】【2,2,2】【1,1,1】【2,2,2】的四段,设中间的分割点是p,k,q,可得到

ans=cnt1[p]+cnt2[p+1]−cnt2[k+1]+cnt1[q]−cnt1[k]+cnt2[q+1]ans=cnt1[p]+cnt2[p+1]−cnt2[k+1]+cnt1[q]−cnt1[k]+cnt2[q+1]

化简得到

ans=cnt1[p]+cnt2[p+1]+cnt1[q]+cnt2[q+1]−cnt1[k]−cnt2[k+1]ans=cnt1[p]+cnt2[p+1]+cnt1[q]+cnt2[q+1]−cnt1[k]−cnt2[k+1]

所以我们可以枚举k, 用线段树维护cnt1【i】 + cnt2【i+1】 的最大值,我这样的公式,需要线段树区间为【0,n】。

#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> /* ⊂_ヽ
  \\ Λ_Λ 来了老弟
   \('ㅅ')
    > ⌒ヽ
   /   へ\
   /  / \\
   レ ノ   ヽ_つ
  / /
  / /|
 ( (ヽ
 | |、\
 | 丿 \ ⌒)
 | |  ) /
'ノ )  Lノ */ using namespace std;
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull;
//typedef __int128 bll;
typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define boost ios::sync_with_stdio(false);cin.tie(0)
#define rep(a, b, c) for(int a = (b); a <= (c); ++ a)
#define max3(a,b,c) max(max(a,b), c);
#define min3(a,b,c) min(min(a,b), c); const ll oo = 1ll<<;
const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = 1e9+;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
} inline void cmax(int &x,int y){if(x<y)x=y;}
inline void cmax(ll &x,ll y){if(x<y)x=y;}
inline void cmin(int &x,int y){if(x>y)x=y;}
inline void cmin(ll &x,ll y){if(x>y)x=y;} /*-----------------------showtime----------------------*/
const int maxn = ;
int a[maxn],cnt1[maxn],cnt2[maxn];
int t[maxn<<]; void build(int l,int r,int rt){
if(l == r){
t[rt] = cnt1[l] + cnt2[l+];
return ;
}
int mid = (l + r) >> ;
build(l, mid, rt<<);
build(mid+,r,rt<<|);
t[rt] = max(t[rt<<], t[rt<<|]);
}
int query(int L,int R,int l,int r,int rt){
if(l >= L && r <= R){
return t[rt];
}
int mx = ;
int mid = (l + r) >> ;
if(mid >= L) mx = max(mx, query(L, R, l, mid, rt<<));
if(mid < R) mx = max(mx, query(L, R, mid+, r, rt<<|));
return mx;
}
int main(){
int n; scanf("%d", &n);
rep(i, , n) scanf("%d", &a[i]); rep(i, , n){
if(a[i] == ) cnt1[i] = cnt1[i-] + ;
else cnt1[i] = cnt1[i-];
}
for(int i=n; i>=; i--) {
if(a[i] == ) cnt2[i] = cnt2[i+] + ;
else cnt2[i] = cnt2[i+];
} build(, n, );
int ans = ;
for(int i=; i<=n; i++){
int tmp = query(,i ,,n,) + query(i,n,,n,) - cnt1[i] - cnt2[i+];
ans = max(ans, tmp);
}
cout<<ans<<endl;
return ;
}

二、

这道题中分四段是关键,我们可以定义dp【i】【1】表示1~i个分一段的答案,dp【i】【2】表示分两段,dp【i】【3】表示分三段,dp【i】【4】表示分四段。

/*-----------------------showtime----------------------*/

            int dp[];
int main(){
int n; scanf("%d", &n);
rep(i, , n) {
int x; scanf("%d", &x);
dp[] = dp[] + (x == );
dp[] = max(dp[], dp[] + (x==));
dp[] = max(dp[], dp[] + (x==));
dp[] = max(dp[], dp[] + (x==));
}
cout<<dp[]<<endl; }
												

CF 462 C. A Twisty Movement 分段想 线段树 或 dp的更多相关文章

  1. (困难) CF 484E Sign on Fence,整体二分+线段树

    Bizon the Champion has recently finished painting his wood fence. The fence consists of a sequence o ...

  2. CF Manthan, Codefest 16 G. Yash And Trees 线段树+bitset

    题目链接:http://codeforces.com/problemset/problem/633/G 大意是一棵树两种操作,第一种是某一节点子树所有值+v,第二种问子树中节点模m出现了多少种m以内的 ...

  3. CF E2 - Array and Segments (Hard version) (线段树)

    题意给定一个长度为n的序列,和m个区间.对一个区间的操作是:对整个区间的数-1可以选择任意个区间(可以为0个.每个区间最多被选择一次)进行操作后,要求最大化的序列极差(极差即最大值 - 最小值).ea ...

  4. CF R638 div2 F Phoenix and Memory 贪心 线段树 构造 Hall定理

    LINK:Phoenix and Memory 这场比赛标题好评 都是以凤凰这个单词开头的 有凤来仪吧. 其实和Hall定理关系不大. 不过这个定理有的时候会由于 先简述一下. 对于一张二分图 左边集 ...

  5. Codeforces Round #462 (Div. 2) C. A Twisty Movement

    C. A Twisty Movement time limit per test1 second memory limit per test256 megabytes Problem Descript ...

  6. CF#462 div1 D:A Creative Cutout

    CF#462 div1 D:A Creative Cutout 题目大意: 原网址戳我! 题目大意: 在网格上任选一个点作为圆中心,然后以其为圆心画\(m\)个圆. 其中第\(k\)个圆的半径为\(\ ...

  7. Codeforces 934C - A Twisty Movement

    934C - A Twisty Movement 思路:dp 很容易想到要预处理出1的前缀和pre[i]和2的后缀和suf[i] 然后枚举区间,对于每个区间如果能求出最长递减序列的长度,那么就能更新答 ...

  8. Codeforces 934.C A Twisty Movement

    C. A Twisty Movement time limit per test 1 second memory limit per test 256 megabytes input standard ...

  9. CF933A A Twisty Movement

    题意翻译 给定一个序列 A,你可以翻转其中的一个区间内的数,求翻转后的序列的最长不下降子序列的长度.(∣A∣≤2000,1≤ai≤2|A|\le 2000,1\le a_i \le 2∣A∣≤2000 ...

随机推荐

  1. 监控LVS

    监控LVS #!/usr/bin/python-2.6.6 #data 2017-10-17 #auth liuchao import commands,os,time #-------------- ...

  2. centos部署oracle rac单实例11.2.0.3数据库(使用asm磁盘)

    部署oracle rac单实例数据库,需要安装grid和datavase两部分,所以首先创建两个用户oracle和grid,因为不能使用root用户进行安装,在安装之前首先需要修改一些系统参数和安装一 ...

  3. java中的异常 try catch

    1.学习异常的原因?      如果没有异常处理机制,那么程序的一点小问题,都会导致[程序终止运行].实际开发中显然是不可能的,所以异常对于程序来说是非常重要的.     2.处理异常的方式:   A ...

  4. JavaWeb购物车

    一.类关系 最近又把JavaWeb方面的知识(Servlet.jsp等)过了一遍,发现以前还是接触的太窄太浅.加上才转到IntelliJ IDEA 上故而想用这个项目练练,就当熟悉熟悉IntelliJ ...

  5. Android常用库源码解析

    图片加载框架比较 共同优点 都对多级缓存.线程池.缓存算法做了处理 自适应程度高,根据系统性能初始化缓存配置.系统信息变更后动态调整策略.比如根据 CPU 核数确定最大并发数,根据可用内存确定内存缓存 ...

  6. GRPC快速入门

    转载请注明来自ChenJiehua的<GRPC快速入门> GRPC是一个高性能.通用的开源RPC框架,基于HTTP/2协议标准和Protobuf序列化协议开发,支持众多的开发语言. 概述 ...

  7. JMeter使用JSON Extractor插件实现将一个接口的JSON返回值作为下一个接口的入参

    ##补充## 接口响应数据,一般为JSON,HTML格式的数据. 对于HTML的响应结果提取,可以使用正则表达式,也可以通过XPath来提取:对于JSON格式的数据,可以用正则表达式,JSON Ext ...

  8. JavaScript浮点数运算的精度问题

    之前在做浮点数计算时,偶然发现计算结果有误差,度娘了解了下,补充整理了下. 误差是什么样子的呢?举例 console.log(0.1+0.2); // 0.30000000000000004 事实上在 ...

  9. Kali Linux-装机后通用配置

    目录 前言 一. 网络优化 更换host 更换dns 添加源 二. 更新系统 三 .安装N卡驱动 四.修复 add-apt-repository 五.安装常用软件 安装apt自带的包 安装第三方的de ...

  10. mac下面有epoll?

    没有的,但是mac下面有kqueue,跟epoll原理是差不多的. 这个是没办法的,如果实在需要,就用Ubuntu吧,这个也可以无缝迁移. 更多资源,更多文章由小白技术社提供(是我啦)