NLP(十八) 一维卷积网络IMDB情感分析
原文链接:http://www.one2know.cn/nlp18/
- 准备
Keras的IMDB数据集,包含一个词集和对应的情感标签
import pandas as pd
from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense,Dropout,Activation
from keras.layers import Embedding
from keras.layers import Conv1D,GlobalAveragePooling1D
from keras.datasets import imdb
from sklearn.metrics import accuracy_score,classification_report
# 参数 最大特征数6000 单个句子最大长度400
max_features = 6000
max_length = 400
(x_train,y_train),(x_test,y_test) = imdb.load_data(num_words=max_features)
print(len(x_train),'train observations')
print(len(x_test),'test observations')
wind = imdb.get_word_index() # 给单词编号,用数字代替单词
revind = dict((k,v) for k,v in enumerate(wind))
# 单词编号:情感词性编号 字典 => 情感词性编号:一堆该词性的单词编号列表
print(x_train[0])
print(y_train[0])
def decode(sent_list): # 逆映射字典解码 数字=>单词
new_words = []
for i in sent_list:
new_words.append(revind[i])
comb_words = " ".join(new_words)
return comb_words
print(decode(x_train[0]))
输出:
25000 train observations
25000 test observations
[1, 14, 22, 16, 43, 530, 973, 1622, 1385, 。。。]
1
tsukino 'royale rumbustious canet thrace bellow headbanger 。。。
- 如何实现
1.预处理,数据整合到一个固定的维度
2.一维CNN模型的构建和验证
3.模型评估 - 代码
import pandas as pd
from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense,Dropout,Activation
from keras.layers import Embedding
from keras.layers import Conv1D,GlobalAveragePooling1D
from keras.datasets import imdb
from sklearn.metrics import accuracy_score,classification_report
# 参数 最大特征数6000 单个句子最大长度400
max_features = 6000
max_length = 400
(x_train,y_train),(x_test,y_test) = imdb.load_data(num_words=max_features)
# print(x_train) # 一堆句子,每个句子有有一堆单词编码
# print(y_train) # 一堆0或1
# print(len(x_train),'train observations')
# print(len(x_test),'test observations')
wind = imdb.get_word_index() # 给单词编号,用数字代替单词
revind = dict((k, v) for k, v in enumerate(wind))
# 单词编号:情感词性编号 字典 => 情感词性编号:一堆该词性的单词编号列表
# print(x_train[0])
# print(y_train[0])
def decode(sent_list): # 逆映射字典解码 数字=>单词
new_words = []
for i in sent_list:
new_words.append(revind[i])
comb_words = " ".join(new_words)
return comb_words
# print(decode(x_train[0]))
# 将句子填充到最大长度400 使数据长度保持一致
x_train = sequence.pad_sequences(x_train,maxlen=max_length)
x_test = sequence.pad_sequences(x_test,maxlen=max_length)
print('x_train.shape:',x_train.shape)
print('x_test.shape:',x_test.shape)
## Keras框架 深度学习 一维CNN模型
# 参数
batch_size = 32
embedding_dims = 60
num_kernels = 260
kernel_size = 3
hidden_dims = 300
epochs = 3
# 建立模型
model = Sequential()
model.add(Embedding(max_features,embedding_dims,input_length=max_length))
model.add(Dropout(0.2))
model.add(Conv1D(num_kernels,kernel_size,padding='valid',activation='relu',strides=1))
model.add(GlobalAveragePooling1D())
model.add(Dense(hidden_dims))
model.add(Dropout(0.5))
model.add(Activation('relu'))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
print(model.summary())
model.fit(x_train,y_train,batch_size=batch_size,epochs=epochs,validation_split=0.2)
# 模型预测
y_train_predclass = model.predict_classes(x_train,batch_size=batch_size)
y_test_preclass = model.predict_classes(x_test,batch_size=batch_size)
y_train_predclass.shape = y_train.shape
y_test_preclass.shape = y_test.shape
print('\n\nCNN 1D - Train accuracy:',round(accuracy_score(y_train,y_train_predclass),3))
print('\nCNN 1D of Training data\n',classification_report(y_train,y_train_predclass))
print('\nCNN 1D - Train Confusion Matrix\n\n',pd.crosstab(y_train,y_train_predclass,
rownames=['Actuall'],colnames=['Predicted']))
print('\nCNN 1D - Test accuracy:',round(accuracy_score(y_test,y_test_preclass),3))
print('\nCNN 1D of Test data\n',classification_report(y_test,y_test_preclass))
print('\nCNN 1D - Test Confusion Matrix\n\n',pd.crosstab(y_test,y_test_preclass,
rownames=['Actuall'],colnames=['Predicted']))
输出:
Using TensorFlow backend.
x_train.shape: (25000, 400)
x_test.shape: (25000, 400)
WARNING:tensorflow:From
D:\Python37\Lib\site-packages\tensorflow\python\framework\op_def_library.py:263:
colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a
future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING:tensorflow:From
D:\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py:3445: calling dropout
(from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a
future version.
Instructions for updating:
Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_1 (Embedding) (None, 400, 60) 360000
_________________________________________________________________
dropout_1 (Dropout) (None, 400, 60) 0
_________________________________________________________________
conv1d_1 (Conv1D) (None, 398, 260) 47060
_________________________________________________________________
global_average_pooling1d_1 ( (None, 260) 0
_________________________________________________________________
dense_1 (Dense) (None, 300) 78300
_________________________________________________________________
dropout_2 (Dropout) (None, 300) 0
_________________________________________________________________
activation_1 (Activation) (None, 300) 0
_________________________________________________________________
dense_2 (Dense) (None, 1) 301
_________________________________________________________________
activation_2 (Activation) (None, 1) 0
=================================================================
Total params: 485,661
Trainable params: 485,661
Non-trainable params: 0
_________________________________________________________________
None
WARNING:tensorflow:From
D:\Python37\Lib\site-packages\tensorflow\python\ops\math_ops.py:3066: to_int32 (from
tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
Train on 20000 samples, validate on 5000 samples
Epoch 1/3
2019-07-07 15:27:37.848057: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU
supports instructions that this TensorFlow binary was not compiled to use: AVX2
32/20000 [..............................] - ETA: 7:03 - loss: 0.6929 - acc: 0.5000
64/20000 [..............................] - ETA: 4:13 - loss: 0.6927 - acc: 0.5156
96/20000 [..............................] - ETA: 3:19 - loss: 0.6933 - acc: 0.5000
128/20000 [..............................] - ETA: 2:50 - loss: 0.6935 - acc: 0.4844
160/20000 [..............................] - ETA: 2:32 - loss: 0.6931 - acc: 0.4813
此处省略一堆epoch的一堆操作
CNN 1D - Train accuracy: 0.949
CNN 1D of Training data
precision recall f1-score support
0 0.94 0.96 0.95 12500
1 0.95 0.94 0.95 12500
accuracy 0.95 25000
macro avg 0.95 0.95 0.95 25000
weighted avg 0.95 0.95 0.95 25000
CNN 1D - Train Confusion Matrix
Predicted 0 1
Actuall
0 11938 562
1 715 11785
CNN 1D - Test accuracy: 0.876
CNN 1D of Test data
precision recall f1-score support
0 0.86 0.89 0.88 12500
1 0.89 0.86 0.87 12500
accuracy 0.88 25000
macro avg 0.88 0.88 0.88 25000
weighted avg 0.88 0.88 0.88 25000
CNN 1D - Test Confusion Matrix
Predicted 0 1
Actuall
0 11144 1356
1 1744 10756
NLP(十八) 一维卷积网络IMDB情感分析的更多相关文章
- NLP入门(十)使用LSTM进行文本情感分析
情感分析简介 文本情感分析(Sentiment Analysis)是自然语言处理(NLP)方法中常见的应用,也是一个有趣的基本任务,尤其是以提炼文本情绪内容为目的的分类.它是对带有情感色彩的主观性 ...
- 十八、centos7网络属性配置
一.为什么需要这个 服务器通常有多块网卡,有板载集成的,同时也有插在PCIe插槽的.Linux系统的命名原来是eth0,eth1这样的形式,但是这个编号往往不一定准确对应网卡接口的物理顺序.为解决这类 ...
- keras—多层感知器MLP—IMDb情感分析
import urllib.request import os import tarfile from keras.datasets import imdb from keras.preprocess ...
- 最全面的图卷积网络GCN的理解和详细推导,都在这里了!
目录 目录 1. 为什么会出现图卷积神经网络? 2. 图卷积网络的两种理解方式 2.1 vertex domain(spatial domain):顶点域(空间域) 2.2 spectral doma ...
- 浅谈NLP 文本分类/情感分析 任务中的文本预处理工作
目录 浅谈NLP 文本分类/情感分析 任务中的文本预处理工作 前言 NLP相关的文本预处理 浅谈NLP 文本分类/情感分析 任务中的文本预处理工作 前言 之所以心血来潮想写这篇博客,是因为最近在关注N ...
- TensorFlow实现文本情感分析详解
http://c.biancheng.net/view/1938.html 前面我们介绍了如何将卷积网络应用于图像.本节将把相似的想法应用于文本. 文本和图像有什么共同之处?乍一看很少.但是,如果将句 ...
- TensorFlow文本情感分析实现
TensorFlow文本情感分析实现 前面介绍了如何将卷积网络应用于图像.本文将把相似的想法应用于文本. 文本和图像有什么共同之处?乍一看很少.但是,如果将句子或文档表示为矩阵,则该矩阵与其中每个单元 ...
- 学习笔记CB009:人工神经网络模型、手写数字识别、多层卷积网络、词向量、word2vec
人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档 ...
- NLP十大里程碑
NLP十大里程碑 2.1 里程碑一:1985复杂特征集 复杂特征集(complex feature set)又叫做多重属性(multiple features)描写.语言学里,这种描写方法最早出现在语 ...
随机推荐
- Windows 使用 helm3 和 kubectl
简介: 主要原因是,我不会 vim ,在 linux 上修改 charts 的很蹩脚,所以就想着能不能再 windows 上执行 helm 命令,将 charts install linux 上搭建的 ...
- python Django编写接口并用Jmeter测试
一.环境准备 python3.6.7 Pycharm 二.创建项目 我这里是在Django项目中新建了个APP,目录结构如下图所示: 那么怎么在已有的Django项目中新建APP并进行配置呢: 2.1 ...
- HelloDjango 系列教程:创建 Django 博客的数据库模型
文中涉及的示例代码,已同步更新到 HelloGitHub-Team 仓库 设计博客的数据库表结构 博客最主要的功能就是展示我们写的文章,它需要从某个地方获取博客文章数据才能把文章展示出来,通常来说这个 ...
- Java中Timer和TimerTask来实现计时器循环触发
package xian; import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.Fi ...
- c#异常后重试操作
private void TryConnect(System.Action action) { int retries = 3; whi ...
- Java - 自动配置log4j的日志文件路径
目录 1 日志路径带来的痛点 2 log4j.properties文件的配置 3 彻底解决痛点 3.1 单独的Java程序包 (非Java Web项目) 3.2 Web项目 4 附录 - 获取当前项目 ...
- Spring Boot 整合 JPA 使用多个数据源
介绍 JPA(Java Persistence API)Java 持久化 API,是 Java 持久化的标准规范,Hibernate 是持久化规范的技术实现,而 Spring Data JPA 是在 ...
- c#实现深拷贝的几种方法
为什么要用到深拷贝呢?比如我们建了某个类Person,并且实例化出一个对象,然后,突然需要把这个对象复制一遍,并且复制出来的对象要跟之前的一模一样,来看下我们一般会怎么做,看代码 public cla ...
- 802.11学习笔记1-WIFI参数含义
研究下wifi参数的含义 #The word of "Default" must not be removed Default CountryRegion= CountryRegi ...
- Viper-Go一站式配置管理工具
什么是Viper Viper是一个方便Go语言应用程序处理配置信息的库.它可以处理多种格式的配置.它支持的特性: 设置默认值 从JSON.TOML.YAML.HCL和Java properties文件 ...