题目链接:http://agc015.contest.atcoder.jp/tasks/agc015_c

题意:给一个n*m的格,蓝色的组成路径保证不成环,q个询问,计算指定矩形区域内蓝色连通块的个数

题解:由于只有两种颜色所以求蓝色连通块就简单多了,连通块要么直接dfs一遍显然会超时,主要是询问有20000个。

但是求连通块也可以用总的个数减去连通的边数(主要是只有一种类型的连通块),直接存边不好处理不妨存一下横着连通的边数和竖着连通的边数,这样

就好处理很多了。

#include <iostream>
#include <cstring>
using namespace std;
const int M = 2e3 + 10;
int dprow[M][M] , dpcow[M][M] , a[M][M] , sum[M][M];
char mmp[M][M];
int main() {
int n , m , q;
cin >> n >> m >> q;
memset(dprow , 0 , sizeof(dprow));
memset(dpcow , 0 , sizeof(dpcow));
memset(a , 0 , sizeof(a));
memset(sum , 0 , sizeof(sum));
for(int i = 1 ; i <= n ; i++) {
cin >> mmp[i];
}
for(int i = 1 ; i <= n ; i++) {
for(int j = 1 ; j <= m ; j++) {
a[i][j] = mmp[i][j - 1] - '0';
}
}
for(int i = 1 ; i <= n ; i++) {
for(int j = 1 ; j <= m ; j++) {
sum[i][j] = a[i][j] + sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1];
dpcow[i][j] = dpcow[i - 1][j] + dpcow[i][j - 1] - dpcow[i - 1][j - 1];
dprow[i][j] = dprow[i - 1][j] + dprow[i][j - 1] - dprow[i - 1][j - 1];
if(a[i][j] == 1) {
if(a[i - 1][j] == 1) dpcow[i][j]++;
if(a[i][j - 1] == 1) dprow[i][j]++;
}
}
}
while(q--) {
int x1 , y1 , x2 , y2;
cin >> x1 >> y1 >> x2 >> y2;
int ans = sum[x2][y2] - sum[x1 - 1][y2] - sum[x2][y1 - 1] + sum[x1 - 1][y1 - 1];
ans -= (dpcow[x2][y2] - dpcow[x1][y2] - dpcow[x2][y1 - 1] + dpcow[x1][y1 - 1]);
ans -= (dprow[x2][y2] - dprow[x2][y1] - dprow[x1 - 1][y2] + dprow[x1 - 1][y1]);
cout << ans << endl;
}
return 0;
}
												

Atcoder C - Nuske vs Phantom Thnook(递推+思维)的更多相关文章

  1. AtCoder:C - Nuske vs Phantom Thnook

    C - Nuske vs Phantom Thnook https://agc015.contest.atcoder.jp/tasks/agc015_c 题意: n*m的网格,每个格子可能是蓝色, 可 ...

  2. Nuske vs Phantom Thnook

    Nuske vs Phantom Thnook Time limit : 4sec / Memory limit : 256MB Score : 700 points Problem Statemen ...

  3. permutation 2(递推 + 思维)

    permutation 2 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) ...

  4. 计蒜客 28319.Interesting Integers-类似斐波那契数列-递推思维题 (Benelux Algorithm Programming Contest 2014 Final ACM-ICPC Asia Training League 暑假第一阶段第二场 I)

    I. Interesting Integers 传送门 应该是叫思维题吧,反正敲一下脑壳才知道自己哪里写错了.要敢于暴力. 这个题的题意就是给你一个数,让你逆推出递推的最开始的两个数(假设一开始的两个 ...

  5. AtCoder Grand Contest 015 C - Nuske vs Phantom Thnook

    题目传送门:https://agc015.contest.atcoder.jp/tasks/agc015_c 题目大意: 现有一个\(N×M\)的矩阵\(S\),若\(S_{i,j}=1\),则该处为 ...

  6. AGC 015C.Nuske vs Phantom Thnook(思路 前缀和)

    题目链接 闻本题有格子,且何谓格子也 \(Description\) 给定\(n*m\)的蓝白矩阵,保证蓝格子形成的的同一连通块内,某蓝格子到达另一个蓝格子的路径唯一. \(Q\)次询问.每次询问一个 ...

  7. AGC015 C Nuske vs Phantom Thnook(前缀和)

    题意 题目链接 给出一张$n \times m$的网格,其中$1$为蓝点,$2$为白点. $Q$次询问,每次询问一个子矩阵内蓝点形成的联通块的数量 保证任意联通块内的任意蓝点之间均只有一条路径可达 S ...

  8. [agc015c]nuske vs phantom thnook

    题意: 有一个n*m的网格图,每个格子是蓝色或白色.四相邻的两个格子连一条边,保证蓝格子构成一个森林. 有q组询问,每次询问给出一个矩形,问矩形内蓝格子组成的联通块个数. $1\leq n,m\leq ...

  9. C - Nuske vs Phantom Thnook

    题意:n*m矩阵,n,m<=2e3,矩阵中的1能走到相邻4个1上,0代表障碍,若两个1联通 则只有一条路径 q个询问,q<=2e5,每次询问一个子矩阵中有多少个连通分量? 同一个连通分量中 ...

随机推荐

  1. 『开发技术』Windows极简安装使用face_recognition

    face_recognition是一个强大.简单.易上手的人脸识别开源项目,并且配备了完整的开发文档和应用案例,特别是兼容树莓派系统.此项目是世界上最简洁的人脸识别库,你可以使用Python和命令行工 ...

  2. C++这么难,为什么还要学习C++呢?如何学?

    在大多数开发或者准开发人员的认识中,C/C++ 是一门非常难的编程语言,很多人知道它的强大,但因为认为“难”造成的恐惧让很多人放弃. 这个世界本来就是残酷的,所以你不能怪C++向你展示了世界的本质 大 ...

  3. eclipse项目导入idea jdk版本不一致😵

    在导入eclipse项目到idea过程中遇到 Imported project refers to unkonwn jdks JavaSE-1.8 解决方法: file --> Project ...

  4. 解决微信二次分享失败--后面被加上from=singlemessage&isappinstalled=0的解决方案

    首次分享成功,点开后再次分享或第三次分享就失败了 1.检查你分享的链接,看是否多了两个参数,微信分享会根据分享的不同,为原始链接拼接: 朋友圈   from=timeline&isappins ...

  5. API开发之接口安全(二)-----sign校验

    上一章 我们说了 sign的生成 那么 我们如何确定这个sign的准确性呢 下来 我们说说 校验sign的那些事 在拿到header里面的内容之后 我们首先需要对其内容的基本参数做一个校验 我们补充下 ...

  6. lxml解析网页

    目录 1. 什么是lxml 2. 初次使用 3. xpath 3.2 标签定位 3.3 序列定位 3.4 轴定位 4. 实例 1. 什么是lxml lxml是干什么的?简单的说来,lxml是帮助我们解 ...

  7. tensorflow学习笔记——图像数据处理

    喜欢摄影的盆友都知道图像的亮度,对比度等属性对图像的影响是非常大的,相同物体在不同亮度,对比度下差别非常大.然而在很多图像识别问题中,这些因素都不应该影响最后的结果.所以本文将学习如何对图像数据进行预 ...

  8. centos7 yum搭建lnmp环境及配置wordpress超详细教程

    yum安装lnmp环境是最方便,最快捷的一种方法.源码编译安装需要花费大量的人类时间,当然源码编译可以个性化配置一些其它功能.目前来说,yum安装基本满足我们搭建web服务器的需求. 本文是我根据近期 ...

  9. DRF (Django REST framework) 中的视图扩展类

    2. 五个扩展类 1)ListModelMixin 列表视图扩展类,提供list(request, *args, **kwargs)方法快速实现列表视图,返回200状态码. 该Mixin的list方法 ...

  10. 行车记+翻车记:.NET Core 新车改造,C# 节能降耗,docker swarm 重回赛道

    非常抱歉,10:00~10:30 左右博客站点出现故障,给您带来麻烦了,请您谅解. 故障原因与博文中谈到的部署变更有关,但背后的问题变得非常复杂,复杂到我们都在怀疑与阿里云服务器 CPU 特性有关. ...