HDU2874 Connections between cities 最近公共祖先
第一次按常规的方法求,将所有的查询的u,v,和最近公共祖先都保存起来,然后用tarjan+并查集求最近公共祖先。因为询问的次数过多,所以在保存查询的时候总是MLE,后来参考了一下别人的代码,才突然觉悟,可以先将u,v,和其最近公共祖先保存到数组,然后再求结果,为什么不能直接保存其结果了。如果只保存结果的话,保存查询操作就可以节约1/3的内存,所以基本可以过了。
代码如下:
方法一:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
const int maxn = 10100;
vector<pair<int,int> >tree[maxn],query[maxn];
int father[2][maxn],res[1000010],dis[maxn],vis[maxn]; void init(int n)
{
memset(vis,0,sizeof(vis));
memset(dis,0,sizeof(dis));
memset(res,-1,sizeof(res));
for( int i = 0; i <= n; i++){
tree[i].clear();
query[i].clear();
father[0][i] = father[1][i] = i;
}
}
int find(int x,int k){
if( x != father[k][x])
return father[k][x] = find(father[k][x],k);
return father[k][x];
}
void LCA(int u){
vis[u] = 1; pair<int,int>x;
int i,size = query[u].size();
for( i = 0; i < size; i++){
x = query[u][i];
if( vis[x.first])
res[x.second] = dis[u] + dis[x.first] - 2*dis[find(x.first,0)];
} size = tree[u].size();
for( i = 0; i < size; i++){
x = tree[u][i];
if( !vis[x.first] ){
dis[x.first] = dis[u] + x.second;
LCA(x.first);
union_set(x.first,u,0);
}
}
}
void union_set(int x,int y,int k){
x = find(x,k);
y = find(y,k);
if ( x != y)
father[k][x] = father[k][y];
}
int main()
{
int n,m,c;
int u,v,d;
int i;
// freopen("in.txt","r",stdin);
while( ~scanf("%d%d%d",&n,&m,&c) ){
init(n);
while( m-- ){
scanf("%d%d%d",&u,&v,&d);
union_set(u,v);
tree[u].push_back(make_pair(v,d));
tree[v].push_back(make_pair(u,d));
}
for( i = 0; i < c; i++){
scanf("%d%d",&u,&v);
if( find(u,1) != find(v,1))continue;
query[u].push_back(make_pair(v,i));
query[v].push_back(make_pair(u,i));
}
for( i = 1; i <= n; i++){
if( !vis[i] )
LCA(i);
}
for( i = 0; i < c; i++)
if( res[i] == -1)puts("Not connected");
else printf("%d\n",res[i]);
}
return 0;
}
方法二:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <algorithm> using namespace std;
const int maxn = 10100;
int anc[maxn],dis[maxn],deep[maxn],vis[maxn],fa[maxn];
vector<pair<int,int> >tree[maxn];
void init(int n)
{
memset(vis,0,sizeof(vis));
for( int i = 1; i <= n; i++){
fa[i] = i;
tree[i].clear();
}
}
void dfs(int u,int now_fa,int now_anc,int now_deep,int now_len)
{
fa[u] = now_fa;
anc[u] = now_anc;
vis[u] = u;
deep[u] = now_deep;
dis[u] = now_len;
for( int i = 0; i < tree[u].size() ; i++)
{
pair<int,int>x = tree[u][i];
if( !vis[x.first] )
dfs(x.first,u,now_anc,now_deep+1,now_len+x.second);
}
}
int find(int x,int y){
if( x == y)return x;
if( deep[x] > deep[y])
return find(fa[x],y);
else return find(x,fa[y]);
}
int main()
{
int n,m,c;
int u,v,d;
int i;
while( ~scanf("%d%d%d",&n,&m,&c)){
init(n); while( m-- ){
scanf("%d%d%d",&u,&v,&d);
tree[u].push_back(make_pair(v,d));
tree[v].push_back(make_pair(u,d));
}
for( i = 1; i <= n; i++ )
if(!vis[i])
dfs(i,-1,i,0,0);
for( i = 0; i < c; i++){
scanf("%d%d",&u,&v);
if(anc[u] != anc[v])puts("Not connected");
else printf("%d\n",dis[u]+dis[v] - 2*dis[find(u,v)]);
}
}
return 0;
}
HDU2874 Connections between cities 最近公共祖先的更多相关文章
- hdu-2874 Connections between cities(lca+tarjan+并查集)
题目链接: Connections between cities Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/327 ...
- [HDU2874]Connections between cities
思路:LCA裸题.本来是帮pechpo调错,结果自己写了半天… 设$dis_x$是点$x$到根结点距离,不难想到两点$u$.$v$之间最短距离等于$dis_u+dis_v-dis_{LCA(u,v)} ...
- [hdu2874]Connections between cities(LCA+并查集)
题意:n棵树,求任意两点的最短距离. 解题关键:并查集判断两点是否位于一棵树上,然后求最短距离即可.此题可以直接对全部区间直接进行st表,因为first数组会将连接的两点的区间表示出来. //#pra ...
- LCA(最近公共祖先)——Tarjan
什么是最近公共祖先? 在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点. 换句话说,就是两个点在这棵树上距离最近的公共祖先节点. ...
- hdu 2874 Connections between cities [LCA] (lca->rmq)
Connections between cities Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...
- Connections between cities
Connections between cities Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java ...
- hdu 2874 Connections between cities(st&rmq LCA)
Connections between cities Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...
- 最近公共祖先(LCA)模板
以下转自:https://www.cnblogs.com/JVxie/p/4854719.html 首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖 ...
- LCA(最近公共祖先)专题(不定期更新)
Tarjan(离线)算法 思路: 1.任选一个点为根节点,从根节点开始. 2.遍历该点u所有子节点v,并标记这些子节点v已被访问过. 3.若是v还有子节点,返回2,否则下一步. 4.合并v到u上. 5 ...
随机推荐
- 【Android】Fresco 初次使用遇到的坑
初次使用开源框架 Fresco,结果遇到了坑,被虐了半下午--暂且记下. 下面的错误 android.view.InflateException: Binary XML file line #** 报 ...
- springboot-权限控制shiro(二)
目录 1. 场景描述 2. 解决方案 1. 场景描述 (1)最近有点小忙,公司真实项目内容有点小多以及不想只介绍理论,就使用springboot单独部署了个shiro的demo项目,还是理论和实际项结 ...
- 云计算网络基础笔记及VLAN交换机配置
- 有容云-PPT | 当微服务遇见容器
编者注: 本文为10月29日有容云高级技术顾问龙淼在Docker Live时代线下系列-广州站中演讲的PPT,本次线下沙龙为有容云倾力打造Docker Live时代系列主题线下沙龙,每月一期畅聊容器技 ...
- 作为前端的你,CC游戏开发可以上车
1. 初来乍到 打开 Cocos Creator 点击新建空白项目,在默认布局的左下区域,一个黄黄assets文件夹映入眼帘.作为前端的你对这个文件是不是再熟悉不过了.是的,和你想象的一样,开发游戏中 ...
- 夯实Java基础(二)——面向对象之封装
1.封装介绍 封装封装,见名知意,就是把东西包装隐藏起来,不被外界所看见, 而Java特性封装:是指利用抽象数据类型将数据和基于数据的操作封装在一起,使其构成一个不可分割的独立实体,数据被保护在抽象数 ...
- Office2019 VOL版本 自定义安装组件
众所周知,Office VOL版本可以连接KMS服务器激活,但是office2019没有镜像可以下载,所以只能依靠Office Deployment Tool来进行操作.注:Office2019 Re ...
- Netty学习(二)-Helloworld Netty
这一节我们来讲解Netty,使用Netty之前我们先了解一下Netty能做什么,无为而学,岂不是白费力气! 1.使用Netty能够做什么 开发异步.非阻塞的TCP网络应用程序: 开发异步.非阻塞的UD ...
- DedeCMS 5.7 sp1远程文件包含漏洞(CVE-2015-4553)
DedeCMS 5.7 sp1远程文件包含漏洞(CVE-2015-4553) 一.漏洞描述 该漏洞在/install/index.php(index.php.bak)文件中,漏洞起因是$$符号使用不当 ...
- TP5使用API时不可预知的内部异常
最常见的错误形式例如 controller不存在或者 action不存在之类的 我们第一时间想到的 就是 使用 try{}catch(){} 来捕获 例如: /** * show方法在common里定 ...