最近一直在学习python,学习完了基本语法就练习了一个爬虫demo,下面总结下。

  

  主要逻辑是 

  1)初始化url管理器,也就是将rooturl加入到url管理器中

  2)在url管理器中得到新的new_url

  3)根据新new_url得到它的内容html_cont  (工具 urllib.request.urlopen(url))

  4)解析这个新页面的内容html_cont并得到新的子url,并保存解析内容结果  (利用BeautifulSoup工具)

  5)将新得到的子url保存到url管理器

  6)迭代2-5步骤,知道输出某个阈值的数量即可停止

  7)输出爬去的结果

  注意编码问题,一致为UTF-8 --   .decode('UTF-8')

  

BeautifulSoup工具的安装方式:进入Python3.x\Script下 输入指令 pip install beautifulsoup4

主页面spider_main.py:

  

'''
Created on -- @author: rongyu
'''
from bike_spider import url_manager, html_downloader, html_parser, html_outputer class SpiderMain(object): def __init__(self):
self.urls = url_manager.UrlManager()
self.downloader = html_downloader.HtmlDownloader()
self.parser = html_parser.HtmlParser()
self.outputer = html_outputer.HtmlOutputer() def craw(self, root_url):
count =
self.urls.add_new_url(root_url)
while self.urls.has_new_url():
try:
new_url = self.urls.get_new_url()
print ('craw %d:%s'%(count,new_url))
html_cont = self.downloader.download(new_url)
new_urls,new_data = self.parser.parse(new_url,html_cont)
self.urls.add_new_urls(new_urls)
self.outputer.collect_data(new_data) if count == :
break count = count +
except:
print('craw failed') self.outputer.output_html() #主程序入口 if __name__=="__main__":
root_url = "http://baike.baidu.com/view/21087.htm"
obj_spider = SpiderMain()
obj_spider.craw(root_url)    #根据url开始爬取

url管理器页面UrlManager.py

'''
Created on -- @author: rongyu
''' class UrlManager(object):
def __init__(self):
self.new_urls = set()
self.old_urls = set() def add_new_url(self,url):
if url is None:
return
if url not in self.new_urls and url not in self.old_urls:
self.new_urls.add(url) def has_new_url(self):
return len(self.new_urls) != def get_new_url(self):
new_url = self.new_urls.pop()
self.old_urls.add(new_url)
return new_url def add_new_urls(self,urls):
if urls is None or len(urls) == :
return
for url in urls:
self.add_new_url(url)

下载器页面 HtmlDownloader.py

import urllib.request

class HtmlDownloader(object):

    def download(self,url):
if url is None:
return None response = urllib.request.urlopen(url) return response.read().decode('UTF-8')

解析器页面HtmlParser.py

from bs4 import BeautifulSoup
import re
import urllib.parse class HtmlParser(object): def _get_new_urls(self, page_url, soup):
new_urls = set()
#/view/.htm
links = soup.find_all('a',href=re.compile(r"/view/\d+\.htm"))
for link in links:
new_url = link['href']
new_full_url = urllib.parse.urljoin(page_url,new_url)
new_urls.add(new_full_url)
return new_urls def _get_new_data(self, page_url, soup):
res_data = {} #url
res_data['url'] = page_url #<dd class="lemmaWgt-lemmaTitle-title"> <h1>Python</h1>
title_node = soup.find('dd',class_="lemmaWgt-lemmaTitle-title").find("h1")
res_data['title'] = title_node.get_text() #<div class="lemma-summary" label-module="lemmaSummary">
summary_node = soup.find('div',class_="lemma-summary")
res_data['summary'] = summary_node.get_text() return res_data def parse(self,page_url,html_cont):
if page_url is None or html_cont is None:
return soup = BeautifulSoup(html_cont,'html.parser',from_encoding='UTF-8')
new_urls = self._get_new_urls(page_url,soup)
new_data = self._get_new_data(page_url,soup)
return new_urls,new_data

输出器的代码HtmlOutputer.py

class HtmlOutputer(object):
def __init__(self):
self.datas = [] def collect_data(self,data):
if data is None:
#print("collect_data -data is none!")
return self.datas.append(data)
#print(self.datas) def output_html(self):
fout = open('output.html','w') fout.write("<html>")
fout.write("<body>")
fout.write("<table>")
for data in self.datas:
fout.write("<tr>")
fout.write("<td>%s</td>"%data['url'].encode('UTF-8'))
fout.write("<td>%s</td>"%data['title'].encode('UTF-8'))
fout.write("<td>%s</td>"%data['summary'].encode('UTF-8'))
fout.write("</tr>")
fout.write("</table>")
fout.write("</body>")
fout.write("</html>")

实验结果:

控制台输出

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAkoAAAEBCAIAAAAINh38AAAgAElEQVR4nO2d7a9cxX3H959pG2wiFSS/ue8iVCsKTZRIDQZMYaOQTVxSUIFCkyqhEcp1miZiU9JAw5MJChRdLIhEbuUUTElLRYpiixTHwMYiFjGNqQ03WBiDI52+2N2z8/D7zZmze3Zn9uznoyPLd+6ceToz53tmzrnz7RTzZ2tra2tra9++fVtj9u3bZ/5qMTwzZpGZAgBAEjorIm9oGwDASrEq8raFwgEArBIrJG9bKBwAwMqwWvK2hcIBAKwGKydvAACwCiBvAADQQpA3AABoIcgbAAC0EOQNAABaSGJ5AwAAmAfIGwAAtJBk8gYAADA/0sgbAADAXEHeAACghSBvAADQQrKQtyNHjqRdol08K1hlAIBFkljeyrv8O+++vzpH2fpHjhyZxzMLAACklLehtp1+573T77x3/OTvVucYVvn0O++hcwAAcyKZvA217eTb7/7qjbdX9jj59rvDA5EDAGiWNPI21LYTp868/PppjpdfP33i1JkTp86gcAAATZFS3o6f/N3/vPZ/w+PK2x6/4Ib/DB9X3vZ4Gb+Vx/GTv2MaBwDQCMl2LTn2xtuHf3WyPC64/qd/du3t4eOC639qntLK49gbbx97420UDgBgRlLK23+/8r/lccEXD+76/Prh0+e1Y9fn1y/44kHzlBTHDz/Vueo7Nc/aM6YysDxQOACAGUkmb6+8/tZ/HTlRHhdc95Mrr/vG4dPnz75//uy58++dO3/23Pmz7//+7Lnfnz13/uy53+++7u+3/cVPzFOM46FPdsZ8+iElTiPHQ5/sXPXtmmft2bNn2A579uzRQvzjldffQuEAAKYmmbwd+fWpZ3/xenls+8KPr7nhW4dPn+/d9vif//XDn+zdfcnl/7D2ia+dOfvBO2fPn3n3/DU3fOuCL/zYPGV0fG93p9P5+PcmP154y38I0Zo5fvDxzu5v1jyrFLOhnjk/Bk488utTKBwAwHQkk7cXj7359OHj5XFB74lrb+4fPn3+rTMfvHXmg9NnPnjLOE6/88G1N/e39X5knvL04eNPH953aadz6XePe+FzOvZd2rlyb/0TTUkzta3yxBePvYnCAQBMQTJ5+/mrvz3wwmvlse2zj+358j8NZ2+92x7v3vovl/3l/R/r/uNHLvvG2ie+dvLt9/d86bvbrt0wTznwwmsHvnNF58Nfvd8JHB0PfKxcsexccfsk8OIv3HjFMHTbjf8+jHz/jRdLMcXThQhlOoHDUbg9e/ZUnjI8fv7qb1E4AIC6JJO3nx1948nnj5XHts88fP1tdx8+ff7EqXO/OXXuN6fOnTh17kT5n9Pnrv/q3ds/87B5ypPPH3vyjis6H/7KPU7g88eefP6+j3Y6H/qrg5NonSv+bhze+dR9Tz5/7MnHvvKhzsWfe2z4n+FvY04v/3Px5x4bRj74uQ93PnqHXwbr8OUtHN88fnb0DRQOAKAWyeTtuZdOPPHcoDy2XfPgjbffc/j0+V+/+d7xk+eOv/ne8TfPHT957vjJ4Y/nbrr93u3XPGie8sRzgye+fXnnwr+9ywkUwp/67IWdnd8ePPHcvTs7F3320TJw+P97d3Y6nUl4+PTLvzqMYPNHNzzllsE4tMXJwCnO8dxLJ1A4AIB4ksnbsy++vvHsK+Wx/ap7btn7wC17H7h17/237H3g1r0P3PqNB27Z+8Ate++/ZfSfB7Zfda95ysazr2w8e8+fdC7qPvyKG/7NXZ0Lv3znJOQn3QuH0cz4ZWD5Y6cz/G3o9F1fFtIPHeFPS2JSGB7Pvvg6CgcAEEkyeXv60PFHDh4tj5037d+++67tu+/atvuu8j/brrxr++67tl85+nHnTfvNU4bHHddd1OlcdPVD45C9l/3hdQceOfj9SzqdP7zuQBnY2f6lOw4efeTg9y+ZRD5w9faLrn7o6CMPfenqvWVI55K9R4OnX3br6D/DmEcfOXj01j8dBsqH+WcAWkjk8fSh4ygcAEAMyeTtwAuv/eDfjojHzpv2b7/8zm2X37ntijt33rRfizY5vv7pySrhpXePw+/+yCT00zdPAv9494PD///r7m2j/998afzp4/8/+Dd/MP71R74eKl75F9yVgTHHgRdeQ+EAACpJJm8/fv7YPz/5onnsvGn/9sv723fdMfp31x3bd/W37epv39Xfvqu/86b9TvyVPX703ACFAwAIk0zefvTcILlOLO+x/6evsvkyAECAZPK2/6evJheJpT4efeblR595GYUDABBJJm+PPvNycoVowfHDp37JNA4AwCeZvP3wqV8m14Z2HA8eeOnBAy/tG4POAQBsJZS3Bw+8lFwY2nTct/mL4YHOAQBsJZS3+zZ/kVwS2n3sAwBYYZLJW/K7PwcHBwdHiw/kjYODg4OjhUdieZvPiisAAKw6yBsAALQQ5A0AAFrIKsnbofUdnR3rh+aZxUZ33jk0xKH1HZ3uRupS1GCjOyzvAi7inNBKnrjPKD1hUtr5d5W0LZPPdVnevp0ryFuj1B4Sh9Z3mK6o5m3ETWuja/3eqU3NyqWSt6nvGc3KWwpJaeA2Onux/RTaIW8ztAzy1l5ylrccZhg1yzCVvGnpH1rf4erb5OehLk5+rplzsrZ1KxXLWN4SF2MO1LlysxfbS6GyJ6QbhottmVlyhzxB3sKklDd3yFoPdxvdTrc7ueXXHd3p2nbK+1DD8paRvtXqM83rW0vkrfkLirwtP5nJ26H1HaMVuI1uuWI36mSTkHGvGw68je4oaKPb2bG+MVrt625MzhjFn4zTjW5nx/q6/dtx7sYqYUwZ7GjmL6KWGqR7h7ouZPy40e10NyY/WxHN8pSBTlsZJwxrXa78WScaZzmLp15UJ+txzbWrZla4olV3rB+yFycryiYVrbIYYmr2JVTud7GNpl4jZxIullO6cJW5y502puJ+O7tdRblqS9IyzefuUHUvkspXfYMKXbKovrpqZCJv40utPleal6sMt0bbqAcNYw0vvTM8rd5j/nasJV1jaiTohlgG643YRleogtmBPex3b26R3EmLmWt3w3hinUSzi2BXxFM7O7ogtfZZZmpCW3m1l1vMqZTaql5SgrwJZRNqEVMMJTXjVHn+GN9odveT+kxMJ7fLUZm70JJxFfflzUpJadIlapnGc3ebOHgvEkdQxQ2qqiKVfXX1yEDeJjM2B/tOZCM9h5q9UPq/83A06a+BJ6qqMjhPSdpDU0wdZTx9Gz2oltM7uxRuAQRtn4R3u3ahhjV010Pl6aM413XqLl81u1IxrWqeosxYHWkMzK7lYoRSc58gbKIbzU+yTMC8D1Z0cqckVbnLHTKi4k47O11FbdLlaZnmc3dKErwXlSUwR1DEDSpUkeq+unJkIG9bW8osx5YWYQA1Km+H1ncIy5hVZaiQt6jZW7gn2klujBYlrTu0/bNbAHWds7Njh7R8OixzcHVUbCtR3pQVEl2PtRPj5c2rRUwx9NSGLVh1nSIbreo2Wt3JxebRc1fqXl1xZ5bsdJUaa1+5tswcclcKot2LvBE0q7xF9tUVIhN5G2PNcszL5KwbiDe42eTNGfHCPVQsgxlo9llxVcFH6orOiXb33uh2ut2utfzo/iwuwYeEahR+aH3dbXnveng3AiOG2RQb66M29VvMqVRlq5ZJCfImlE2oRUwxlNRGcbpd7buF+Eazup/YZ2I6uV1sJXdnnmW3ZFzF/ccIK6LepHm3zHxzn1B1LxJHUPXz90Snp+mrq0dm8mYzmvsY19SeCjUqb0YGO7rdMuGqMphrFzvW1+Ofaq0qessezqKKu9Tm3L/scWYuppS/CMx1hvG7G+aZRu27XTdUaysj2A9x7gVGpcQ4blLK7E0om1+LmGKoqW25jwwusY3mN7nfZ6o7udt6cu4bdlyhUlUV9+VtkttELKQmzbtl5pu7WfXw4qQ0gurI23R9ddXIWt5gSLrVhjnmPHPSzZTNnJsEbtN17hiLuFyz55GiU6VtmdYs2jXYV1sO8rYUpHpXPNc7woyVaqpsw2I0eFdczG109i6x+E6VtmVWQN5aU8WGQN4gQM7DpdmyyakZi3FmwAT5pVO+jTY/8m+Z+eUeU/cGieyrgLwBAEAbQd4AAKCFJJa3fQAAAHMgsbwtIHcAAFhBkDcAAGghyBsAALQQ5A0AAFoI8rZ8DPpra/1BfDgshlTtz3UHEEHeis1ep9PpxNwgBv21TqfT21xAoQJs9uQiTMI3e5EVEpJwTuuvTZmUk2xT5fFTnalkTaJdFzlqc4Lk5ttfG/1xsZOF1s8H5Ql28YfxnfAyrpiFmHLq8QKry6rL26C/1ultFpu9yNvNoL+mDVftN/oZ0xA5dWvwgb6RpOYzwdjsZSNvmUzdDOHc7BnSovbzzV75iGDq5Ci+F2525pgqTzFeAJoiI3mbPC2u9cuBM3xaXOsPxs+YxpjzHiHlKDF3QFnehglYg3DQX+v1vcfdgfNQO/6FEj6aEvWNCgvP2RVTtHB4f22tvyk9x0vtZpbUb4fhtTCq0tt0qhbRwo2VxyrHSN7MWUL8XFzsb4U1QTFqurbWG+dpXfpJYpOQMuW1/sD8IbJeZXtG9OfQlFGQFq+fWwHGCea5mozF6FON8RLVzgA1yEXezEfNQX9NuAMOR/Vmb7wAt1n2+8mDpjegY2dldeStLJs3Yaoxe7OWbcxHZSXfMmLkWzdrUdF6FJfaLZi+IW+9TTtwUvwqhWuoPOaqnrU4aV35iKuu9bf+mtHzyplNWfnxaU5H89vNCvE0SLpeUntW9efg/Ema2lbK2+QU67lDSD4wL7Nj1RgvVe0MUItM5C24yiTerewHQGfxZDimaixeTbc4aZ9VV96c+2PEMI6duoXSV9qtjCbJm3eP856+K5+ymymPdHd3E/SjCSgdQ5OTMqNxS9sRxesyCfQb1a2X3p7B/qxP3ZyHEbc+SoApb+VzZFEM+j1x/MUIT73xUtHOAPVYUnmz3s2bY2Czt9YfbPbW+pu9tf5m9OBIIG/u/a2ypLU+mFTSV9stmFSn1+t1nPllzZdezZQnS3kLXJfRRES+jduzUqU9A/05kK+6OivIm1E6o1ZWRKk9I4cW8gYJyUTenG/JrLfiwugyHzOdB9XNXq/XG77zWFuLHhu13r2pw1V8qS+Hj5/HyziVi5M1pm5u+uViYKDdxmGqUrrXpOqbRv9zvgbK473iMuRtsgTm3t2F8mj9zf1Qo1wkVG+7gbdfmz37rZ5eL7091f4s52u2iVIidyiVUzPn05KKAahkPtN4Qd6gUXKRt8L+5th5m+4vXhnLOWu9nvEia1C+PYn6+trNwF38sYZrmen49UCn07Ff1YhrbFJ4f21UbDcRKd+i5tRt+FbKSN9+ryO0m9sMlgy7X0jYH/IIVXbL32B5rN/0epPXb5OERt/seC9vhfVbofT+Yql51cd/4lB+zBJ8++W9VA3US2tPpT/L+YqfbIgZW49W0jW0G9ppOkV1ZhsvwXYGmIKM5G2lqPkZuSbVjf4BFdQmVftz3QGqQd4SYMxYcvmzLQCAloG8AQBAC0HeAACghSBvAADQQpA3AABoIcgbAAC0EOQNAABaCPK2fNT6E29YGKnan+sOIIK8qfaPPnnsoYCdqZXqTCVrklzsTMeBUk+ts7FO0FpISd8mj/ECq8uqy5tm/6gR2AQPO9N5J+KBnam+C3bf7Xeai4AYPgja/Irpa8WrO14AmiIjeUtpZ1oUhbhfvPecO8DOFDtT4epkZGc6emJzerPl5VZUh4/TEnc0FdJXqDFeotoZoAa5yFtiO9NxXDfEG2Bm2bwJU43ZG3amU5UHO1PfEcjNd5TXwHWhMPa0ts1uxHAxv0D6CvXGS1U7A9QiE3lLbWeqLdxIEXWDj3ry5twfI3LHzjRHvzf97VfpuiAaOtkVUdqzrp2p4wxQ5jIwny/sdhPD7fpXp69Rb7xgiAONsqTy1qSdqWAQFozckLy597eY137xH0xiZxosTpvtTMW6ODNsyx1PCrfrX51+VCmQN1gsmcib8y3Z4uxMg/aP2Jka5cfOtBBvu3nZmVp52L83V4R7Vt+Tw8cB8fKGnSnkRS7yViSxM9U+CSnM3CdhZfTx6wF7fQY7U6X82JnaJZHbrQE7Uy8bqV/5bSGEB+xPq9KfdrwE2xlgCjKSt5UCO9NWgJ0pQL4gbwnAzhQAYN4gbwAA0EKQNwAAaCHIGwAAtBDkDQAAWgjyBgAALQR5AwCAFoK8LR+1/sQbFkaq9ue6A4ggb9Z+FzExU++hgJ2plepMJWuS3O1MNdtebS8TLR2fPMYFgMuqy5u8b6FOYBM87EznnYgHdqb6Lti23ahq21ua/igPN9iWwvKSkbzlYGcas/cjdqbWDoFxLYydaWI7Uzsrc+9WSwSNxLEthWUnF3lLamc62e1VCnflDTvTwp6NOaYqItiZBus1fztTOw2rISzvN+PBrCIdi3rjoqo9ARohE3lLbWc6yqdpe0Y9HDvTacqTpd+b/vardF0QDZ3siijt2ZSdqZmR38hl7LJa2JZCC1hSeWvSztTJKRyjOXlz72+VJa31wSR2psHirJydaeEviii5VaZTnRvyBnmQibw5M6fF2Zmas4pN5x6uvXtTh7H88h470+bKg52p3BQC3gSzcgFZTlFQHmxLYTnIRd6KJHamThZV797KTMevDex1G+xMlfJjZ2qXRG63OdqZip94CO3pKgy2pbDUZCRvKwV2pq0AO1OAfEHeEoCdKQDAvEHeAACghSBvAADQQpA3AABoIcgbAAC0EOQNAABaCPIGAAAtBHlbPmr9iTcsjFTtz3UHEEHehiyRbSN2plaqM5WsSXKxMzX3bynEcHH/Z/t3zjYn4dLmMS4AXJC3opizbSN2pk0l4oGdqZuvas9r25Y67g3SjmXWnlv1HAP0pAAWSUbylsrOVLdtxM50nBR2pstjZ2omaZjjGRl6fgfhhorRpxrjIqo9ARogF3lLZWc62fQ2Wt6wMy3s2dgAO9Ns7EzLyjlC6Mpb+avNnrHXtZRYtCEOdqaQG5nIWzI70/naNurh2JlOU54s/d6U65LGztQpgTp7sxy6LV2qahKZeuMCQxxYCEsqb3OwM41+Sm1I3tz7W2XmtT6YxM40WJwVsDO1k7VKYZTemXn7SUYOIeQNMiQTeXO+JVucnamVZuS7N3UYj3/CztQrP3amwXrp7VnTzlS15x30e8aqrnmmuVLsqqwsO9iZwnKQi7wVyexMrWzCt8Uy0/FrA/sU7EyV8mNnapdEbreG7Eytb3Xk+sqPccJvFNXBzhSWg4zkbaXAzrQVYGcKkC/IWwKwMwUAmDfIGwAAtBDkDQAAWgjyBgAALQR5AwCAFoK8AQBAC0HeAACghSBvy0etP/GGhZGq/bnuACIrL28DefOKQNzUeytgZ2qlOlPJmiQXO9NRmNeltb1JJJsimTz6P0AsyFu93e4C0bEznXciHtiZyl48ggbZdqamq5C8U6qeXd3+D5CKjOQtjZ1pSN6wMx0nhZ3pstiZSqY2he/gUx1Hpkb/j2o3gDmSi7ylsjMNLk5iZzqMVsqbZIPgmaqIYGcarFdzdqaaPakxe5Ond3FT4Xr9v6rdAOZKJvKWzM7Uyajy4bKer5Uejp3pNOXJ0u9NuS5p7EwHuj2p5ang1FNRPB983WCJWFJ5m4OdaWUxvLxmkzf3/hazLhT/wSR2psHitNbO1JlJK0WzsnMXS4Igb7BEZCJvzrdki7MzNRejFHcu792bOrzll/TYmTZXHuxM5aYwCdmTemeabShFnK3/I2+QlFzkrUhnZ6rb02Bnip2pfdWXwM60kDuc1W7CKPKv4qz9P9huAAsgI3lbKbAzbQXYmQLkC/KWAOxMAQDmDfIGAAAtBHkDAIAWgrwBAEALQd4AAKCFIG8AANBCkDcAAGghyNvyUetPvGFhpGp/rjuACPJWFIW+4YhNHnsuYGdqpTpTyZokFztT2RJId8aos9lO5e82exEjJI9xBO0HeYvfLX0UWYuKnem8E/HAztTNd7QNmLhNq/ZQJNmcWp5Ftn4Gxkt/rdPz3Ai0YtcdRwB1yUjektmZ1t1SFjtTp2rYmfp7PZeFX7Cd6Tg4Ut5cZx/JgcFSUH28jNQxbtfkGuMoqv0BBHKRt2R2ppr94yRjV96wMy3s2ZhjwiKCnWmwXs3ZmWotoC1Oqjan1nOHlbI0XiaXNFresEWFeZOJvCWzMx3o9o9afN0QpJ68OffHiOGKnWmOfm/KdUljZ2qXW629eZ7ltWD4/Bizt57j8OCPF8cKofLxot44wlgHpmJJ5a0xO1Nn5lH5AqU5eXPvb5XDtdYHk9iZBovTWjtTu9waWnaTcCsB44fq8RK/OIm8wZzJRN6cb8kWZ2dahOwfsTM1yo+daSHeXrOzMx3n7C5Wi5+NOGUwNVvv59p48c8sE55tHCFvMBW5yFuRzs5U/8wZO1PsTO2rnr2dqZuB9QglBNrtqRXVf9Kq+EW4P9cbR8H2BwiQkbytFNiZtgLsTAHyBXlLAHamAADzBnkDAIAWgrwBAEALQd4AAKCFIG8AANBCkDcAAGghyBsAALQQ5G35qPUn3rAwUrU/1x1AZNXlzdnLNnybyGOvBOxMrVRnKlmT5GVn6u8pMtmPxQ6XbIpk8uj/ALEgb9ZeQfV2OteTigmfjsipG3amCyaXqZtiT+qEG1uQl3HsTUX17Or2f4BUZCRvaexMDbzxiZ3pOCnsTJfEztR16hEdABSNirStwIYUloVc5C2ZnWlJ9E7n2JkW9mzMMUkRwc40WK/m7EwVe1JX3oTrFTUVrtf/q9oNYK5kIm/J7EzN9GIGXj2fKj0cO9NpypOl35tyXZLZmVreCWtx8ia5EYng0wZLxJLKW2N2piWRUZuTN/f+FrMuFP/BJHamweK03c7US9YqxcBNJ/7DH+QNlohM5M35lmyhdqajRISo2Jka5cfOtBBv01namfoxBv2esaprPA4GXp1iQwrLTS7yVqS0M9VGHXam2JnaVz17O1O7fawaO98G+ZX1zsCGFJabjORtpcDOtBVgZwqQL8hbArAzBQCYN8gbAAC0EOQNAABaCPIGAAAtBHkDAIAWgrwBAEALQd4AAKCFIG/LR60/8YaFkar9ue4AIsibutmITx57LmBnaqU6U8maJBc703Gg1FOlvi72/4DN72SrEzt9c9+YcInzGEfQflZd3ixvloj7U2DTPOxM552IB3am+i7Yfbffia4AWv9XbX51W1Rh/89gseuOI4C6ZCRvSexMg1u/Y2c6Tgo70yWxMy3KqaEjIL4Jzji40vpA3UVZ0ahYecMWFeZMLvKWzs7Uur9Kv3LlDTvTwp6NDbAzzcbOdNK0A9eFwtjT2nZFCD+m2OkEfeMmuywL6XipYosK8yYTeUtnZ1rqpeUZolLP70oPx850mvJk6femv/0qXRdEQye7Ikp71rUzdSwJylwG5vOFKUtV/d9XSV3eJmWotziJbxzMhyWVt8bsTK20I576m5M39/4W89ov/oNJ7EyDxVkBO9OBG9n2FxydWtn/nRYJ2KLGVEcuHfIG8yETeXOe+BZnZxq8LWJnapQfO9NCvL3mamfqKYD1EUnkY4H0xCHaopqz882e39izjSPkDaYiF3krktmZ6v6P3rAsMx2/BrDWf4yU3CmAH46d6XTlsS8XdqYy/sVycrdlUryIo1x8FRFsUZ10qt5h1xtHwfYHCJCRvK0U2Jm2AuxMAfIFeUsAdqYAAPMGeQMAgBaCvAEAQAtB3gAAoIUgbwAA0EKQNwAAaCHIGwAAtBDkbfmo9SfesDBStT/XHUAEeVM3G/HJY68E7EytVGcqWZMsg52pFl5nw53Jvi7x6dvkMY6g/ay8vNn2jPW2VLbBznTeiXhgZ6rvgu3ZmWrh0maferhiZxrOVyx23XEEUJeM5C25nalkOOI+ZQ6wM3V2AoybQmFnmtjOVAtXTG10sxvbEMfevFLMV6TGOIpqfwCBXOQtmZ2p8TTqPa5iZzqMVsqbZIPgma2IYGcarNfc7Uy18EKzOVXCNb83NX2FeuOoqv0BRDKRt3R2ps5e81Wjpp5PlR6Onek05cnS701/+1W6LoiGTnZFlPZsys60rs2pFq7Jm5a+Rr1xhCEOTMWSyltjdqZ+TuEYzcmbe3+rLGmtDyaxMw0WZ+XsTLVwZ+ZtuebJ9qf2RyZ+FvGLk8gbzJlM5M35rGNxdqYm3o0IO1Oj/NiZFuLtdWnsTLVw0eZUDVfsTIP5YmcKachF3opUdqYhN0fsTLEzta/6ctuZauF1Oq5qZ1qZ/rTjKNj+AAEykreVAjvTVoCdKUC+IG8JwM4UAGDeIG8AANBCkDcAAGghyBsAALQQ5A0AAFoI8gYAAC0EeQMAgBaCvLWHWn/6DQsjVftz3WHFQd5KQwL3RjDZv6Jqd4Q89lDA5tRKdaaSNUkuNqfV/dxuNMm+yE7LHhva3idaOlp8nzzGFywfqy5vo22T/G0tg7aNYjpaHGxO552IBzanbr5aP5f37bSE1t5sVN4c1Np+zBwvajqbc7cRBshI3kR7yXnbmZZ5e8PeNv4QnoO9LWKxOXWqhs2pvwd0WXjjh8h6zWhzOgwO75AZsj4wIoXjxKTjOgrFOHVgfwo1yUXeNHvJ8e/mZmeqxNN8rYwCufKGzWlhz8YcUxURbE6D9WrM5jTYApNdjYVTHO3R7E/t55GYdHQbYYF646vqusCKkIm8pbQzFbMIyptAPf8qPRyb02nKk6UPnHJdNpPYnNrl1iovzx29lUnB5nTy3Gl55qjpWJVr3EYYAx0oimJp5U21wZzSzlR6J2EtyES8/W5I3tz7W8xrv/gPJrE5DRan7TanFS1gZecuopSBss2ptdzirSeHG75pG2HkDYqiyEbenCdH9y20+JQ7+f/sdqZSFrpt48z2jHo4NqdTlcd7xYXNqZqzu1htPBra7/MUyRFtTrX+H0hHL/HM4wt5g2UgiNQAAAKYSURBVKIo8pG3IpGdqZuB7VasLLDNZs8o5G1pHjanU5TH+g02px56P5femYmfbEiJ2bIqFlJJR4pu/27a8RW8LrBSZCRvUGBz2hJStT/XHWAC8pYR2JwCADQF8gYAAC0EeQMAgBaCvAEAQAtB3gAAoIUgbwAA0EKQNwAAaCHIW3uo9SfesDBStT/XHVYc5K3QrFLiLVTy2BOheneuzV5khYQkQs4D09JgefxUZypZk8TYBU6iNidIbr51+7m22U5de1Itfsgu1SaP8QXLx6rL20CxedTCA+loww8703kn4oGdqZtv3X5ueRPNYE+qxVfT0atTd3wBZCRvoo1kKjvTYLiy5St2pk7VsDP193ouC2/8EFmvOdqZSvIWa33g/V97vNAkKtIWAztTqEsu8qbZSI5/t2g702C4LG/YmRb2bMwxTxHBzjRYr8XYmYrh0lbL3jlW9Ap7Um1KHTXVrje+qq4LrAiZyFt2dqYV4R71/Kj0cOxMpylPln5vynXZzNHO1A9v1p5UUTw1XIpYY3xhiANFUSytvKl2l03ZmVaEezQnb+79LWbdJv6DSexMg8VZVTvTsFv9bPakWvyIdKzIyBvUJRN5c74Zc99ai0+5k//Pw840FI6dqVF+7EwL8Ta6HHamWrjWn+vak2rxg+lgZwrNkIu8FZnZmer2j4U//MrCjJf7h2cMvDzcKYAfjp3pdOWxfoOdqUf9ft6EPakWP5COdF3qja/gdYGVIiN5gwI705aAnSlAepC3jMDOFACgKZA3AABoIcgbAAC0kMTytgUAADAHkDcAAGghyBsAALQQ5A0AAFpIpvL2zJi5NwAAALSRHOUNbQMAgBnJTt7QNgAAmJ285A1tAwCARshL3rZQOAAAaIL/B0jkEIO83A06AAAAAElFTkSuQmCC" alt="" />

Python:的web爬虫实现及原理(BeautifulSoup工具)的更多相关文章

  1. python多进程web爬虫-提升性能利器

    背景介绍: 小爬我最近给部门开发了一系列OA的爬虫工具,从selenium前端模拟进化到纯requests后台post请求爬取,效率逐步提升.刚开始能维持在0.5秒/笔.可惜当数据超过2000笔后,爬 ...

  2. 第三百三十六节,web爬虫讲解2—urllib库中使用xpath表达式—BeautifulSoup基础

    第三百三十六节,web爬虫讲解2—urllib库中使用xpath表达式—BeautifulSoup基础 在urllib中,我们一样可以使用xpath表达式进行信息提取,此时,你需要首先安装lxml模块 ...

  3. Python Web框架 tornado 异步原理

    Python Web框架 tornado 异步原理 参考:http://www.jb51.net/article/64747.htm 待整理

  4. Python动态网页爬虫-----动态网页真实地址破解原理

    参考链接:Python动态网页爬虫-----动态网页真实地址破解原理

  5. python简单页面爬虫入门 BeautifulSoup实现

    本文可快速搭建爬虫环境,并实现简单页面解析 1.安装 python 下载地址:https://www.python.org/downloads/ 选择对应版本,常用版本有2.7.3.4 安装后,将安装 ...

  6. Python爬虫从入门到进阶(1)之Python概述及爬虫入门

    一.Python 概述 1.计算机语言概述 (1).语言:交流的工具,沟通的媒介 (2).计算机语言:人跟计算机交流的工具 (3).Python是计算机语言的一种 2.Python编程语言 代码:人类 ...

  7. 【网络爬虫】【python】网络爬虫(四):scrapy爬虫框架(架构、win/linux安装、文件结构)

    scrapy框架的学习,目前个人觉得比较详尽的资料主要有两个: 1.官方教程文档.scrapy的github wiki: 2.一个很好的scrapy中文文档:http://scrapy-chs.rea ...

  8. Python学习网络爬虫--转

    原文地址:https://github.com/lining0806/PythonSpiderNotes Python学习网络爬虫主要分3个大的版块:抓取,分析,存储 另外,比较常用的爬虫框架Scra ...

  9. 用Python写网络爬虫 第二版

    书籍介绍 书名:用 Python 写网络爬虫(第2版) 内容简介:本书包括网络爬虫的定义以及如何爬取网站,如何使用几种库从网页中抽取数据,如何通过缓存结果避免重复下载的问题,如何通过并行下载来加速数据 ...

随机推荐

  1. Java 最常见 200+ 面试题答案全解析-面试必备

    本文分为十九个模块,分别是: Java 基础.容器.多线程.反射.对象拷贝.Java Web .异常.网络.设计模式.Spring/Spring MVC.Spring Boot/Spring Clou ...

  2. HBase 官方文档0.90.4

    HBase 官方文档0.90.4 Copyright © 2010 Apache Software Foundation, 盛大游戏-数据仓库团队-颜开(译) Revision History Rev ...

  3. 高性能最终一致性框架Ray之基本概念原理

    一.Actor介绍 Actor是一种并发模型,是共享内存并发模型的替代方案. 共享内存模型的缺点: 共享内存模型使用各种各样的锁来解决状态竞争问题,性能低下且让编码变得复杂和容易出错. 共享内存受限于 ...

  4. (七十一)c#Winform自定义控件-折现图

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. GitHub:https://github.com/kwwwvagaa/NetWinformControl 码云:ht ...

  5. SpringBoot和Hibernate整合

    1.先使用idea创建maven项目(这个就不详细讲了,很简单的操作) 2.创建完maven项目之后添加springboot依赖,pom.xml文件如下: <?xml version=" ...

  6. 从零开始OpenGL—— 一、 环境配置

    前言 高考完之后填志愿,当时想以后去做游戏,所以选择了计算机这个专业,之前捣鼓过U3D,这学期也开始了计算机图形学的学习,最近学习了OpenGL相关的一些内容,将在博客中记录这系列的学习.这篇开篇博客 ...

  7. 【iOS】得到当前年、月、周的第一天和最后一天

    在写一个记账软件,其中有个统计功能.比如,统计某月的支出,需要知道某天所在的月的第一天和最后一天,以便从数据库中根据时间取数据. 话不多说,上代码: // // EBDate.h // ChargeM ...

  8. Spring boot使用log4j打印日志

    先将maven中spring-boot-starter的日志spring-boot-starter-logging去掉 <dependency> <groupId>org.sp ...

  9. Spring Cloud系列之Eureka服务治理

    写在前面 Spring Cloud Eureka是基于Netflix Eureka做的二次封装.主要包含两部分: 服务注册中心 eureka server 服务提供者 eureka client ps ...

  10. 使用Storm进行词频统计

    词频统计 1.需求:读取指定目录的数据,并且实现单词计数功能 2.实现方案: Spout用于读取指定文件夹(目录),读取文件,将文件的每一行发射到Bolt SplitBolt用于接收Spout发射过来 ...