点此看题面

大致题意: 在\(n\)个数中选任意个数,并使其中至多\(k\)个数\(x_i\)变为\(x_i!\),求使这些数和为\(S\)的方案数。

\(meet\ in\ middle\)

这应该是\(meet\ in\ middle\)一道比较板子的题目。

我们先对于一半的数,爆搜然后开\((k+1)\)个\(map\)统计使用\(!\)个数小于等于\(i\),和为\(j\)的方案数。

然后对于另一半数,我们再爆搜一遍,到\(map\)中去找对应的情况使得使用\(!\)个数小于等于\(k\),和为\(j\)

并用一个变量\(ans\)统计答案。

由于一个数有选、不选、选做阶乘三种情况,所以时间复杂度为\(O(3^{\frac n2})\),而且加上剪枝之后还跑不满,稳过。

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define RL Reg LL
#define Con const
#define CI Con int&
#define CL Con LL&
#define I inline
#define W while
#define N 25
#define LL long long
using namespace std;
int n,m,k,a[N+5];LL s,ans,Fac[N+5];map<LL,int> p[N+5];
I void dfs1(CI x,CI u,CL v)//第一次dfs
{
if(x>n/2) {for(RI i=u;i<=k;++i) ++p[i][v];return;}//用map存储该情况方案数
dfs1(x+1,u,v),a[x]+v<=s&&(dfs1(x+1,u,a[x]+v),0),//不选/选
a[x]<=m&&Fac[a[x]]+v<=s&&u<k&&(dfs1(x+1,u+1,Fac[a[x]]+v),0);//选做阶乘
}
I void dfs2(CI x,CI u,CL v)//第二遍dfs,除统计答案过程大体同上
{
if(x>n) return (void)(ans+=p[k-u][s-v]);//统计答案
dfs2(x+1,u,v),a[x]+v<=s&&(dfs2(x+1,u,a[x]+v),0),
a[x]<=m&&Fac[a[x]]+v<=s&&u<k&&(dfs2(x+1,u+1,Fac[a[x]]+v),0);
}
int main()
{
RI i;for(scanf("%d%d%lld",&n,&k,&s),i=1;i<=n;++i) scanf("%d",a+i);//读入
for(Fac[0]=i=1;Fac[i-1]<=s;++i) Fac[i]=Fac[i-1]*i;m=i-1;//算阶乘
return dfs1(1,0,0),dfs2(n/2+1,0,0),printf("%lld",ans),0;//求解并输出
}

【CF525E】Anya and Cubes(meet in middle)的更多相关文章

  1. SSAS系列——【08】多维数据(程序展现Cube)

    原文:SSAS系列--[08]多维数据(程序展现Cube) 1.引用DLL? 按照之前安装的MS SQLServer的步骤安装完成后,发现在新建的项目中“Add Reference”时居然找不到Mic ...

  2. 洛谷 P3377 【模板】左偏树(可并堆)

    洛谷 P3377 [模板]左偏树(可并堆) 题目描述 如题,一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或 ...

  3. 【BZOJ2342】双倍回文(回文树)

    [BZOJ2342]双倍回文(回文树) 题面 BZOJ 题解 构建出回文树之后 在\(fail\)树上进行\(dp\) 如果一个点代表的回文串长度为\(4\)的倍数 并且存在长度为它的一半的回文后缀 ...

  4. 【BZOJ2337】Xor和路径(高斯消元)

    [BZOJ2337]Xor和路径(高斯消元) 题面 BZOJ 题解 我应该多学点套路: 对于xor之类的位运算,要想到每一位拆开算贡献 所以,对于每一位拆开来看 好了,既然是按位来算 我们就只需要计算 ...

  5. 【BZOJ4372】烁烁的游戏(动态点分治)

    [BZOJ4372]烁烁的游戏(动态点分治) 题面 BZOJ 大意: 每次在一棵书上进行操作 1.将离某个点u的距离不超过d的点的权值加上w 2.询问单点权值 题解 这题和前面那一道震波几乎是一模一样 ...

  6. 【BZOJ1013】球形空间产生器(高斯消元)

    [BZOJ1013]球形空间产生器(高斯消元) 题面 Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标, ...

  7. 【LightOJ1370】Bi-shoe and Phi-shoe(欧拉函数)

    [LightOJ1370]Bi-shoe and Phi-shoe(欧拉函数) 题面 Vjudge 给出一些数字,对于每个数字找到一个欧拉函数值大于等于这个数的数,求找到的所有数的最小和. 题解 首先 ...

  8. 【Luogu3398】仓鼠找sugar(树链剖分)

    [Luogu3398]仓鼠找sugar(树链剖分) 题面 题目描述 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴是一个树形结构.这一天小仓鼠打算从从他 ...

  9. 【Luogu3731】[HAOI2017]新型城市化(网络流,Tarjan)

    [Luogu3731][HAOI2017]新型城市化(网络流,Tarjan) 题面 洛谷 给定一张反图,保证原图能分成不超过两个团,问有多少种加上一条边的方法,使得最大团的个数至少加上\(1\). 题 ...

随机推荐

  1. php 交换值

    使用异或和第三参数比较 结果比较:(其中之一) 异或:执行时间在 0.035-0.085之间 第三参数:执行时间在 0.035-0.050之间 结论:使用第三参数执行效率更高/更稳定

  2. selenium元素定位方法之轴定位

    一.轴运算名称 ancestor:祖先结点(包括父结点) parent:父结点 preceding:当前元素节点标签之前的所有结点(html页面先后顺序) preceding-sibling:当前元素 ...

  3. java war包 路径--解决war包中文件路径问题

    https://blog.csdn.net/u013409283/article/details/51480948 转自:http://free-chenwei.iteye.com/blog/1507 ...

  4. WPF中Expander的用法和控件模板详解

    一.Expander的用法 在WPF中,Expander是一个很实用的复合控件,可以很方便的实现下拉菜单和导航栏等功能.先介绍简单的用法,而后分析他的控件模板. <Window.Resource ...

  5. python基础(2):python的安装、第一个python程序

    1. 第一个python程序 1.1 python的安装 自己百度,这是自学最基本的,安装一路确定即可,记得path下打钩. 1.2 python的编写 python程序有两种编写方式: 1.进入cm ...

  6. Python笔记:设计模式之工厂模式

    工厂模式:“工厂”即表示一个负责创建其他类型的对象的类,通常情况下,一个工厂的对象会有一个或多个方法与之关联,这些方法用于创建不同类型的对象,工厂对象会根据客户端给方法传递的不同的参数或者客户端调用不 ...

  7. Linux网络——配置防火墙的相关命令

    Linux网络——配置防火墙的相关命令 摘要:本文主要学习了如何在Linux系统中配置防火墙. iptables命令 iptables准确来讲并不是防火墙,真正的防火墙是运行于系统内核中的netfil ...

  8. 并发编程-epoll模型的探索与实践

    前言 我们知道nginx的效率非常高,能处理上万级的并发,其之所以高效离不开epoll的支持, epoll是什么呢?,epoll是IO模型中的一种,属于多路复用IO模型; 到这里你应该想到了,sele ...

  9. windows下dubbo-admin2.6.x之后版本的安装

    安装zookeeper(单机) 下载bin.tar.gz的版本,解压 conf下的zoo_sample.cfg改zoo.cfg zoo.cfg里添加配置 dataDir=G:/zookeeper-/d ...

  10. STM32 IAP 升级功能

    IAP In Application Programming 可通过USB,CAN,UART,I2C,SPI等接口实现 IAP流程 Bootloader程序:接收升级程序,更新到flash指定地址:跳 ...