FZU Monthly-201906 tutorial

题目(难度递增) easy easy-medium medium medium-hard hard
思维难度 AE B DG CF H

A. Xorisk

求出前缀异或和。从头到尾扫一遍,维护map[x]表示之前有多少个前缀异或和为x,枚举到第i个数就加上map[ai^k]即可。

B. short-path-problem

裸的最短路,构造数据卡掉了SPFA写法,使用Dijkstra就可以正常AC。

C. cover

可以先把字符串插入AC自动机里,用dp来计数,状态表示为f[i][j][k],表示长度为i,现在在自动机状态为j,而且已经有长度为k没被覆盖了,转移就是枚举4个字符,转移一下自动机状态和没被覆盖的长度

D. banzhuan

题意

三维空间一块方形空间,要摆一些实心格子,每个格子有个代价,这格子可以摆当且仅当下面是地面或者下面的格子已经摆了,求最大代价最小代价

题解: 贪心+数学

这个题目,出题组搞出了个假的贪心策略,也就是说标程写了个假算法,特在此致歉,不知道在考试期间,有没有给选手们带来困扰或者不必要的麻烦,但是大部分选手这题都没有提交,不知道是否是时间安排不当,这个题目定位是个仅次于签到的贪心难度,虽然纠正之后的贪心难度,要比之前的稍微难一些,但是贪心策略是不难想到的,选手们应该要有尝试;经过后来补充测试,本场冠军的这道题在倒数第二发通过了,时间离结束也不远

另一方面,本题题面还有点小歧义,虽然按照正常一些的理解,是符合出题人的设定的,但是没有严格明确强调,主要是中文题面,里面有个字“放”,有点语义上的歧义,比如可以理解为放这个动作,也可以理解为放着这种状态

显然最底下一层要铺满,考虑上面的任意一层,如果你把贡献的\(z\)这个因子,提取出来,那么容易发现这个一层就转化为一个平面的问题了,因为剩余的因子大家是一样的

考虑一层如何摆布才能最小:

1)考虑最优的方案中,2-n这些列显然不会同一列出现两个;如若不然,设有两个棋子,上面这个设为\(A\),下面设为\(B\),可以把\(A\)移动到第一列,这样显然效果更好,且代价更低,故由调整法可证2-n这些列最多一个棋子,且每列至少一个,故每列严格一个棋子

2)2-n每一列的棋子一定放在第1行,反证法,如若不然,将一个棋子\(C\)拆分为两个棋子\(C1\)和\(C2\),如图:
\[
xy^2-(x1^2+1y^2)=xy^2-x-y^2+1-1=(x-1)(y^2-1)-1 \ge 2 \gt 0,\forall x \ge 2,y \ge2
\]
故由调整法知2-n的棋子严格放在第1行

3)2-n行每行只会放一个棋子,且放在第一列,且\((1,1)\)不放棋子,显然

最优排布一层的就是这样,红色部分为棋子

现在考虑很多层,假设前\(k\)层已经都排布好了,现在放第\(k+1\)层,因为第\(k+1\)层这样放是最优的,且恰好可以放在第\(k\)层上,由归纳法知就这样放满\(n\)层就是可行且最优的方案

最大值显然就是全部排满\(n^3\),只要计算一下答案即可
\[
ret_{max}=(\sum_{z=1}^nz)(\sum_{x=1}^nx)(\sum_{y=1}^ny^2) \\
ret_{min}=(\sum_{x=1}^nx)(\sum_{y=1}^ny^2)+\sum_{z=2}^nz(\sum_{x=2}^nx+\sum_{y=2}^ny^2)
\]

E. spanning-tree

题意

问1到n这些数,构成完全图,w(i,j)=i+j,次小生成树

题解

很简单的贪心,就所有点都连1,这样就是最小的,然后把3连1改成3连2即可,就是次小的了(比最小的多1)

证明:

首先,最小生成树严格有\(n-1\)条边,\(2n-2\)个度之和,那么答案显然为\(2n-2\)的正整数之和\(S=\sum_{i=1}^na_i\)

最小生成树要联通,即每个点至少一个度,那么其中\(n\)个数固定为\(1,2,3\dots n\)

剩下的\(n-2\)个数,显然至少为\(1\),那么\(S \ge n-2 +\sum_{i=1}^ni=n(n+1)/2+n-2\)

前面我们显然找到了一种构造方案,使得上式取到等号

F. 8862015

数位DP中的基础题

G. Euclid

可以发现两个式子可以拼成一个矩形内整点数量,所以答案是(p - 1) * (q - 1) /4,注意p和q相等时拼的线要多算一次,所以还要加 (p - 1) / 2.

H. i-love-gcd

题意与题解

本题留有空白,给选手们自己思考,考点和算法方向也隐藏

FZU Monthly-201906 tutorial的更多相关文章

  1. FZU Monthly-201903 tutorial

    FZU Monthly-201903 tutorial 题目(难度递增) easy easy-medium medium medium-hard hard 思维难度 ABF G CH D E A. D ...

  2. FZU Monthly-201901 tutorial

    FZU Monthly-201901 tutorial 题目(难度递增) easy easy-medium medium medium-hard hard 思维难度 AHG F B CE D 编码难度 ...

  3. FZU Monthly-201909 tutorial

    FZU Monthly-201909 tutorial 题目(难度递增) easy easy-medium medium medium-hard hard 思维难度 AB CD EF G H A. I ...

  4. FZU Monthly-201905 tutorial

    FZU Monthly-201905 tutorial 题目(难度递增) easy easy-medium medium medium-hard hard 思维难度 AB H DG CE F A. C ...

  5. Microsoft Azure Tutorial: Build your first movie inventory web app with just a few lines of code

    Editor’s Note: The following is a guest post from Mustafa Mahmutović, a Microsoft Student Partner wh ...

  6. Career Planning:Developers Best Practices Tutorial

    This small tutorial is based on my past 16+ years of experience in software development industry. I ...

  7. [翻译+山寨]Hangfire Highlighter Tutorial

    前言 Hangfire是一个开源且商业免费使用的工具函数库.可以让你非常容易地在ASP.NET应用(也可以不在ASP.NET应用)中执行多种类型的后台任务,而无需自行定制开发和管理基于Windows ...

  8. Monthly Income Report – August 2016

    原文链接:https://marcoschwartz.com/monthly-income-report-august-2016/ Every month, I publish a report of ...

  9. Django 1.7 Tutorial 学习笔记

    官方教程在这里 : Here 写在前面的废话:)) 以前学习新东西,第一想到的是找本入门教程,按照书上做一遍.现在看了各种网上的入门教程后,我觉得还是看官方Tutorial靠谱.书的弊端一说一大推 本 ...

随机推荐

  1. 基于elementUI创建的vue项目

    这周对公司的内容使用vue进行重构,所以记录一下开始项目的过程 下载elementUI: 项目文件夹中在命令行中输入:npm install elementui -s 下载完成后在 main.js 中 ...

  2. vue使用vue-cli创建项目

    安装运行环境(node和npm) 安装vue-cli(查看是否安装成功vue -V) 安装webpack 新建项目 1.vue init webpack 项目名称 2.配置项目有关的信息(项目名称,开 ...

  3. 26、router.beforeEach路由拦截

    为了防止用户未登录直接修改路径来访问页面,解决办法: 在main.js文件中加入以下代码: // 路由拦截 router.beforeEach((to, from, next) => { if ...

  4. jQuery源码学习一: 创建一个jquery实例

    前言: jquery是每个前端都会的基础技能,众所周知,jquery返回的是jquery实例方法,但是我们似乎是直接使用$就可以获取到jquery的方法啦,可以在浏览器中判断一下 window.$ 和 ...

  5. React学习笔记①

    三种导出方式 export let num = 1://1 let num2 = 2://2 export {num2};//2 export default {default}//3 三种导入方式 ...

  6. AttributeError: module 'matplotlib' has no attribute 'verbose'

    AttributeError: module 'matplotlib' has no attribute 'verbose' 翻译:attributeError:模块“matplotlib”没有“ve ...

  7. 升级.net core 3.x 后mvc项目调试状态编辑view代码不能实时预览

    https://stackoverflow.com/a/58126955 简单来说 需要在nuget上安装Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilati ...

  8. 【漏洞复现】PHPStudy后门

    0x01 概述 Phpstudy软件是国内一款免费的PHP调试环境程序集成包,通过集成Apache.PHP.MySQL.phpMyAdmin.ZendOptimizer多款软件一次性安装,无需配置即可 ...

  9. 详解CentOS6.7部署Tomcat及主配置文件

    Java程序实现部署及应用 POSIX :可移植操作系统,编程操作系统接口规范,实现跨平台编译运行. API:应用程序编程接口 ABI:应用程序二进制接口 描述了应用程序和操作系统之间,一个应用和它的 ...

  10. 转,关于TCP粘包问题的一些思路

    TCP粘包分析 一 .两个简单概念长连接与短连接:1.长连接 Client方与Server方先建立通讯连接,连接建立后不断开, 然后再进行报文发送和接收. 2.短连接 Client方与Server每进 ...