Educational Codeforces Round 70 题解
噩梦场。
题目出奇的难,好像一群外国老哥看 A 看着看着就哭了……
A
找到 \(b\) 最低的 \(1\),这个 \(1\) 肯定要跟 A 中的一个 \(1\) 搭配,而且是能搭配的 \(1\) 中最低的。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=100010,mod=998244353;
#define MP make_pair
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
int x=0,f=0;char ch=getchar();
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
int t,n,m;
char a[maxn],b[maxn];
int main(){
t=read();
while(t--){
scanf("%s",a+1);scanf("%s",b+1);
n=strlen(a+1);m=strlen(b+1);
int at,ans=0;
ROF(i,m,1) if(b[i]=='1'){at=n-(m-i);break;}
while(at>0 && a[at]=='0') at--,ans++;
printf("%d\n",ans);
}
}
B
大力枚举 \(i,j\)。对于每个 \(i,j\) 都 \(O(n)\) 算,每次就是问在相邻两个数之间最少加多少个数。特别注意相邻两个数相同的情况。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=2000200,mod=998244353;
#define MP make_pair
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
int x=0,f=0;char ch=getchar();
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
int n,ok[10][10][111],okk[10][10][10];
char s[maxn];
int main(){
scanf("%s",s+1);
n=strlen(s+1);
MEM(ok,0x3f);MEM(okk,0x3f);
FOR(i,0,9) FOR(j,0,9){
ok[i][j][0]=0;
FOR(l,0,99){
ok[i][j][l+i]=min(ok[i][j][l+i],ok[i][j][l]+1);
ok[i][j][l+j]=min(ok[i][j][l+j],ok[i][j][l]+1);
}
FOR(k,1,110) okk[i][j][k%10]=min(okk[i][j][k%10],ok[i][j][k]);
if(!i || !j) okk[i][j][0]=1;
// FOR(k,0,9) printf("ok[%d][%d][%d]=%d\n",i,j,k,ok[i][j][k]);
}
FOR(i,0,9){
FOR(j,0,9){
int ans=0;
bool flag=true;
FOR(k,2,n){
int x=okk[i][j][(s[k]-s[k-1]+10)%10];
x=max(x-1,0);
if(x>=1e9){printf("-1 ");flag=false;break;}
ans+=x;
}
if(flag) printf("%d ",ans);
}
puts("");
}
}
C
毒瘤玩意……当然可能是我写复杂了。
上下和左右互不干扰,分开考虑。以上下为例。
把上看成 \(1\),下看成 \(-1\),那么竖直方向一共跨过了最大前缀和-最小前缀和单位。
不妨枚举在哪里插入字符,然后瞎合并一通。
需要很多东西,比如每个前缀的后缀和的后缀最大值。(smg……)
不保证代码能让大家都理解。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=200020,mod=998244353;
#define MP make_pair
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
int x=0,f=0;char ch=getchar();
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
int t,n,n1,n2,pre1[maxn],suf1[maxn],pre2[maxn],suf2[maxn];
int mnpre1[maxn],mxpre1[maxn],mnpre2[maxn],mxpre2[maxn],mnsuf1[maxn],mxsuf1[maxn],mnsuf2[maxn],mxsuf2[maxn];
int s1[maxn],s2[maxn];
ll ans;
char s[maxn];
void calc(int n,int a[],int pre[],int suf[],int mnpre[],int mxpre[],int mnsuf[],int mxsuf[]){
FOR(i,1,n) pre[i]=pre[i-1]+a[i];
ROF(i,n,1) suf[i]=suf[i+1]+a[i];
FOR(i,1,n) mnpre[i]=a[i]+min(0,mnpre[i-1]),mxpre[i]=a[i]+max(0,mxpre[i-1]);
ROF(i,n,1) mnsuf[i]=min(mnsuf[i+1],suf[i]),mxsuf[i]=max(mxsuf[i+1],suf[i]);
// FOR(i,1,n) printf("pre[%d]=%d,suf[%d]=%d,mnpre[%d]=%d,mxpre[%d]=%d,mnsuf[%d]=%d,mxsuf[%d]=%d\n",i,pre[i],i,suf[i],i,mnpre[i],i,mxpre[i],i,mnsuf[i],i,mxsuf[i]);
}
int main(){
t=read();
while(t--){
scanf("%s",s+1);
n=strlen(s+1);
n1=n2=0;
FOR(i,1,n){
if(s[i]=='W') s1[++n1]=1;
else if(s[i]=='S') s1[++n1]=-1;
else if(s[i]=='A') s2[++n2]=1;
else s2[++n2]=-1;
}
calc(n1,s1,pre1,suf1,mnpre1,mxpre1,mnsuf1,mxsuf1);
calc(n2,s2,pre2,suf2,mnpre2,mxpre2,mnsuf2,mxsuf2);
ans=1ll*(mxsuf2[1]-mnsuf2[1]+1)*(mxsuf1[1]-mnsuf1[1]+1);
// cout<<ans<<endl;
FOR(i,0,n1) ans=min(ans,1ll*(mxsuf2[1]-mnsuf2[1]+1)*(
min(
max(mxsuf1[i+1],suf1[i+1]+1+max(mxpre1[i],0))-min(mnsuf1[i+1],suf1[i+1]+1+min(mnpre1[i],0)),
max(mxsuf1[i+1],suf1[i+1]-1+max(mxpre1[i],0))-min(mnsuf1[i+1],suf1[i+1]-1+min(mnpre1[i],0))
)+1));
// cout<<ans<<endl;
FOR(i,0,n2) ans=min(ans,1ll*(mxsuf1[1]-mnsuf1[1]+1)*(
min(
max(mxsuf2[i+1],suf2[i+1]+1+max(mxpre2[i],0))-min(mnsuf2[i+1],suf2[i+1]+1+min(mnpre2[i],0)),
max(mxsuf2[i+1],suf2[i+1]-1+max(mxpre2[i],0))-min(mnsuf2[i+1],suf2[i+1]-1+min(mnpre2[i],0))
)+1));
cout<<ans<<endl;
FOR(i,0,n+1) pre1[i]=suf1[i]=pre2[i]=suf2[i]=mxpre1[i]=mnpre1[i]=mxsuf1[i]=mnsuf1[i]=mxpre2[i]=mnpre2[i]=mxsuf2[i]=mnsuf2[i]=0;
}
}
D
考虑只有一个 \(7\) 能不能做。\(7\) 明显在最右边。对于每个 \(1\),求出它右边有 \(x_i\) 个 \(3\),答案就是 \(\sum\frac{x_i(x_i-1)}{2}\)。
然后每次选一个尽可能大的 \(x_i\),不停构造,由于 \(x_i\) 肯定不超过 \(50000\),而且无论 \(n\) 多小都可以在后面加 \(2\) 个 \(3\) 使得 \(n\) 减少 \(1\),所以这组解一定存在且合法。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=100010,mod=998244353;
#define MP make_pair
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
int x=0,f=0;char ch=getchar();
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
int t,n,a[maxn],k;
int main(){
t=read();
while(t--){
n=read();k=0;MEM(a,0);
while(n){
a[++k]=sqrt(2*n);
while(a[k]*(a[k]-1)<=2*n) a[k]++;
while(a[k]*(a[k]-1)>2*n) a[k]--;
n-=a[k]*(a[k]-1)/2;
}
FOR(i,1,k){
printf("1");
FOR(j,1,a[i]-a[i+1]) printf("3");
}
printf("7\n");
}
}
E
最小清新的一道题。
考虑求出 \(a[i]\) 表示在 \(t\) 中能以 \(i\) 结尾匹配的串的个数,\(b[i]\) 表示在 \(t\) 中能以 \(i\) 开头匹配的串的个数。答案是 \(\sum a[i]b[i+1]\)。
这两个东西都可以通过 AC 自动机简单求。大概就是维护 fail 链上末尾节点的个数之类的。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=200020,mod=998244353;
#define MP make_pair
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
int x=0,f=0;char ch=getchar();
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
struct ACAM{
int cnt,ch[maxn][26],fail[maxn],q[maxn],sum[maxn],h,r,val[maxn];
void insert(char *s,int l){
int now=0;
FOR(i,1,l){
int p=s[i]-'a';
if(!ch[now][p]) ch[now][p]=++cnt;
now=ch[now][p];
}
sum[now]++;
}
void build(){
h=1;r=0;
FOR(i,0,25) if(ch[0][i]) q[++r]=ch[0][i];
while(h<=r){
int u=q[h++];
FOR(i,0,25) if(ch[u][i]){
fail[ch[u][i]]=ch[fail[u]][i];
sum[ch[u][i]]+=sum[fail[ch[u][i]]];
q[++r]=ch[u][i];
}
else ch[u][i]=ch[fail[u]][i];
}
}
void run(char *s,int l){
int now=0;
FOR(i,1,l){
int p=s[i]-'a';
now=ch[now][p];
val[i]=sum[now];
}
}
}AC[2];
int n,l;
ll ans;
char t[maxn],s[maxn];
int main(){
scanf("%s",t+1);l=strlen(t+1);
n=read();
FOR(i,1,n){
scanf("%s",s+1);
int len=strlen(s+1);
AC[0].insert(s,len);
for(int j=1,k=len;j<k;j++,k--) swap(s[j],s[k]);
AC[1].insert(s,len);
}
AC[0].build();AC[1].build();
AC[0].run(t,l);
for(int i=1,j=l;i<j;i++,j--) swap(t[i],t[j]);
AC[1].run(t,l);
FOR(i,1,l) ans+=1ll*AC[0].val[i]*AC[1].val[l-i];
// FOR(i,1,l) printf("val1[%d]=%d,val2[%d]=%d\n",i,AC[0].val[i],i,AC[1].val[l-i+1]);
cout<<ans<<endl;
}
Educational Codeforces Round 70 题解的更多相关文章
- Educational Codeforces Round 70 (Rated for Div. 2) 题解
比赛链接:https://codeforc.es/contest/1202 A. You Are Given Two Binary Strings... 题意:给出两个二进制数\(f(x)\)和\(f ...
- Educational Codeforces Round 19 题解【ABCDE】
A. k-Factorization 题意:给你一个n,问你这个数能否分割成k个大于1的数的乘积. 题解:因为n的取值范围很小,所以感觉dfs应该不会有很多种可能-- #include<bits ...
- Educational Codeforces Round 55 题解
题解 CF1082A [Vasya and Book] 史上最难A题,没有之一 从题意可以看出,翻到目标页只有三种办法 先从\(x\)到\(1\),再从\(1\)到\(y\) 先从\(x\)到\(n\ ...
- Codeforces Educational Codeforces Round 54 题解
题目链接:https://codeforc.es/contest/1076 A. Minimizing the String 题意:给出一个字符串,最多删掉一个字母,输出操作后字典序最小的字符串. 题 ...
- Codeforces Educational Codeforces Round 57 题解
传送门 Div 2的比赛,前四题还有那么多人过,应该是SB题,就不讲了. 这场比赛一堆计数题,很舒服.(虽然我没打) E. The Top Scorer 其实这题也不难,不知道为什么这么少人过. 考虑 ...
- Educational Codeforces Round 57题解
A.Find Divisible 沙比题 显然l和2*l可以直接满足条件. 代码 #include<iostream> #include<cctype> #include< ...
- Educational Codeforces Round 24 题解
A: 考你会不会除法 //By SiriusRen #include <bits/stdc++.h> using namespace std; #define int long long ...
- Educational Codeforces Round 70 (Rated for Div. 2)
这次真的好难...... 我这个绿名蒟蒻真的要崩溃了555... 我第二题就不会写...... 暴力搜索MLE得飞起. 好像用到最短路?然而我并没有学过,看来这个知识点又要学. 后面的题目赛中都没看, ...
- Educational Codeforces Round 70
目录 Contest Info Solutions A. You Are Given Two Binary Strings... B. You Are Given a Decimal String.. ...
随机推荐
- LeetCode 733: 图像渲染 flood-fill
题目: 有一幅以二维整数数组表示的图画,每一个整数表示该图画的像素值大小,数值在 0 到 65535 之间. An image is represented by a 2-D array of int ...
- Java Exception 异常处理
一.定义 异常(Exception) : 是指程序运行时出现的非正常情况,是特殊的运行错误对象,对应着Java语言特定的运行错误处理机制. 二.两大常见的异常类型 • RuntimeException ...
- 【mysql】修改mysql数据库密码
修改mysql数据库密码 操作系统:Linux centos7 数据库:mysql5.7 一.在已知MYSQL数据库的ROOT用户密码的情况下,修改密码 1.在Linux命令行,使用mysqladmi ...
- oracle的instr()函数
我们知道很多语言都提供了indexOf()和lastIndexOf()函数,以便能查找某个字符在某个字符串中的出现的位置和最后一次出现的位置. 但是Oracle没有提供这两个函数,事实上,它提供了一个 ...
- Django学习笔记(19)——BBS+Blog项目开发(3)细节知识点补充
本文将BBS+Blog项目开发中所需要的细节知识点进行补充,其中内容包括KindEditor编辑器的使用,BeautifulSoup 模块及其防XSS攻击,Django中admin管理工具的使用,me ...
- 解决 Visual Studio 符号加载不完全问题
解决 Visual Studio 符号加载不完全问题 工具 - 选项 - 搜索 "符号" - 选上服务器 | 加载所有符号, 之后符号就会显示完全
- c# 移除类中所有事件的绑定
单例中为防止多处注册事件引起异步触发时发生报错,网上找了一圈没找到想要的方法. [异常类型]:ArgumentException[异常信息]:该委托必须有一个目标(且仅有一个目标). 结合网上资料整合 ...
- Visual Studio2017使用EF添加Mysql
为了能够在Visual Studio 中集成Mysql, 首先需要安装MySql的连接工具 与 MySql的VisualStudio插件. MySQL Connector Net 6.8.8 (目前最 ...
- word转html预览
#region Index页面 /// <summary> /// Index页面 /// </summary> /// <paramname="url&quo ...
- EurekaServer自动装配及启动流程解析
在开始本篇文章之前,我想你对SpringCloud和SpringBoot的基本使用已经比较熟悉了,如果不熟悉的话可以参考我之前写过的文章 本篇文章的源码基于SpringBoot2.0,SpringCl ...