Deepo
Deepo is a series of Docker images that
- allows you to quickly set up your deep learning research environment
- supports almost all commonly used deep learning frameworks
- supports GPU acceleration (CUDA and cuDNN included), also works in CPU-only mode
- works on Linux (CPU version/GPU version), Windows (CPU version) and OS X (CPU version)
and their Dockerfile generator that
- allows you to customize your own environment with Lego-like modules
- automatically resolves the dependencies for you
GPU Version
Installation
Step 1. Install Docker and nvidia-docker.
Step 2. Obtain the all-in-one image from Docker Hub
docker pull ufoym/deepo
For users in China who may suffer from slow speeds when pulling the image from the public Docker registry, you can pull deepo
images from the China registry mirror by specifying the full path, including the registry, in your docker pull command, for example:
docker pull registry.docker-cn.com/ufoym/deepo
or
docker pull hub-mirror.c.163.com/ufoym/deepo
or
docker pull docker.mirrors.ustc.edu.cn/ufoym/deepo
Usage
Now you can try this command:
docker run --runtime=nvidia --rm ufoym/deepo nvidia-smi
This should work and enables Deepo to use the GPU from inside a docker container. If this does not work, search the issues section on the nvidia-docker GitHub – many solutions are already documented. To get an interactive shell to a container that will not be automatically deleted after you exit do
docker run --runtime=nvidia -it ufoym/deepo bash
If you want to share your data and configurations between the host (your machine or VM) and the container in which you are using Deepo, use the -v option, e.g.
docker run --runtime=nvidia -it -v /host/data:/data -v /host/config:/config ufoym/deepo bash
This will make /host/data
from the host visible as /data
in the container, and /host/config
as /config
. Such isolation reduces the chances of your containerized experiments overwriting or using wrong data.
Please note that some frameworks (e.g. PyTorch) use shared memory to share data between processes, so if multiprocessing is used the default shared memory segment size that container runs with is not enough, and you should increase shared memory size either with --ipc=host
or --shm-size
command line options to docker run
.
docker run --runtime=nvidia -it --ipc=host ufoym/deepo bash
CPU Version
Installation
Step 1. Install Docker.
Step 2. Obtain the all-in-one image from Docker Hub
docker pull ufoym/deepo:cpu
Usage
Now you can try this command:
docker run -it ufoym/deepo:cpu bash
If you want to share your data and configurations between the host (your machine or VM) and the container in which you are using Deepo, use the -v option, e.g.
docker run -it -v /host/data:/data -v /host/config:/config ufoym/deepo:cpu bash
This will make /host/data
from the host visible as /data
in the container, and /host/config
as /config
. Such isolation reduces the chances of your containerized experiments overwriting or using wrong data.
Please note that some frameworks (e.g. PyTorch) use shared memory to share data between processes, so if multiprocessing is used the default shared memory segment size that container runs with is not enough, and you should increase shared memory size either with --ipc=host
or --shm-size
command line options to docker run
.
docker run -it --ipc=host ufoym/deepo:cpu bash
You are now ready to begin your journey.
$ python
>>> import tensorflow
>>> import sonnet
>>> import torch
>>> import keras
>>> import mxnet
>>> import cntk
>>> import chainer
>>> import theano
>>> import lasagne
>>> import caffe
>>> import caffe2
$ caffe --version
caffe version 1.0.0
$ darknet
usage: darknet <function>
$ th
│ ______ __ | Torch7
│ /_ __/__ ________/ / | Scientific computing for Lua.
│ / / / _ \/ __/ __/ _ \ | Type ? for help
│ /_/ \___/_/ \__/_//_/ | https://github.com/torch
│ | http://torch.ch
│
│th>
Customization
Note that docker pull ufoym/deepo
mentioned in Quick Start will give you a standard image containing all available deep learning frameworks. You can customize your own environment as well.
Unhappy with all-in-one solution?
If you prefer a specific framework rather than an all-in-one image, just append a tag with the name of the framework. Take tensorflow for example:
docker pull ufoym/deepo:tensorflow
Jupyter support
Step 1. pull the image with jupyter support
docker pull ufoym/deepo:all-jupyter
Step 2. run the image
docker run --runtime=nvidia -it -p 8888:8888 --ipc=host ufoym/deepo:all-jupyter jupyter notebook --no-browser --ip=0.0.0.0 --allow-root --NotebookApp.token= --notebook-dir='/root'
Build your own customized image with Lego-like modules
Step 1. prepare generator
git clone https://github.com/ufoym/deepo.git
cd deepo/generator
Step 2. generate your customized Dockerfile
For example, if you like pytorch
and lasagne
, then
python generate.py Dockerfile pytorch lasagne
This should generate a Dockerfile that contains everything for building pytorch
and lasagne
. Note that the generator can handle automatic dependency processing and topologically sort the lists. So you don’t need to worry about missing dependencies and the list order.
You can also specify the version of Python:
python generate.py Dockerfile pytorch lasagne python==3.6
Step 3. build your Dockerfile
docker build -t my/deepo .
This may take several minutes as it compiles a few libraries from scratch.
Comparison to alternatives
. | modern-deep-learning | dl-docker | jupyter-deeplearning | Deepo |
---|---|---|---|---|
ubuntu | 16.04 | 14.04 | 14.04 | 18.04 |
cuda | X | 8.0 | 6.5-8.0 | 8.0-10.0/None |
cudnn | X | v5 | v2-5 | v7 |
onnx | X | X | X | O |
theano | X | O | O | O |
tensorflow | O | O | O | O |
sonnet | X | X | X | O |
pytorch | X | X | X | O |
keras | O | O | O | O |
lasagne | X | O | O | O |
mxnet | X | X | X | O |
cntk | X | X | X | O |
chainer | X | X | X | O |
caffe | O | O | O | O |
caffe2 | X | X | X | O |
torch | X | O | O | O |
darknet | X | X | X | O |
Tags
Available Tags
. | CUDA 10.0 / Python 3.6 | CPU-only / Python 3.6 |
---|---|---|
all-in-one | latest all all-py36 py36-cu100 all-py36-cu100 |
all-py36-cpu all-cpu py36-cpu cpu |
all-in-one with jupyter | all-jupyter-py36-cu100 all-jupyter-py36 all-jupyter |
all-py36-jupyter-cpu py36-jupyter-cpu |
Theano | theano-py36-cu100 theano-py36 theano |
theano-py36-cpu theano-cpu |
TensorFlow | tensorflow-py36-cu100 tensorflow-py36 tensorflow |
tensorflow-py36-cpu tensorflow-cpu |
Sonnet | sonnet-py36-cu100 sonnet-py36 sonnet |
sonnet-py36-cpu sonnet-cpu |
PyTorch / Caffe2 | pytorch-py36-cu100 pytorch-py36 pytorch |
pytorch-py36-cpu pytorch-cpu |
Keras | keras-py36-cu100 keras-py36 keras |
keras-py36-cpu keras-cpu |
Lasagne | lasagne-py36-cu100 lasagne-py36 lasagne |
lasagne-py36-cpu lasagne-cpu |
MXNet | mxnet-py36-cu100 mxnet-py36 mxnet |
mxnet-py36-cpu mxnet-cpu |
CNTK | cntk-py36-cu100 cntk-py36 cntk |
cntk-py36-cpu cntk-cpu |
Chainer | chainer-py36-cu100 chainer-py36 chainer |
chainer-py36-cpu chainer-cpu |
Caffe | caffe-py36-cu100 caffe-py36 caffe |
caffe-py36-cpu caffe-cpu |
Torch | torch-cu100 torch |
torch-cpu |
Darknet | darknet-cu100 darknet |
darknet-cpu |
Deprecated Tags
. | CUDA 9.0 / Python 3.6 | CUDA 9.0 / Python 2.7 | CPU-only / Python 3.6 | CPU-only / Python 2.7 |
---|---|---|---|---|
all-in-one | py36-cu90 all-py36-cu90 |
all-py27-cu90 all-py27 py27-cu90 |
all-py27-cpu py27-cpu |
|
all-in-one with jupyter | all-jupyter-py36-cu90 |
all-py27-jupyter py27-jupyter |
all-py27-jupyter-cpu py27-jupyter-cpu |
|
Theano | theano-py36-cu90 |
theano-py27-cu90 theano-py27 |
theano-py27-cpu |
|
TensorFlow | tensorflow-py36-cu90 |
tensorflow-py27-cu90 tensorflow-py27 |
tensorflow-py27-cpu |
|
Sonnet | sonnet-py36-cu90 |
sonnet-py27-cu90 sonnet-py27 |
sonnet-py27-cpu |
|
PyTorch | pytorch-py36-cu90 |
pytorch-py27-cu90 pytorch-py27 |
pytorch-py27-cpu |
|
Keras | keras-py36-cu90 |
keras-py27-cu90 keras-py27 |
keras-py27-cpu |
|
Lasagne | lasagne-py36-cu90 |
lasagne-py27-cu90 lasagne-py27 |
lasagne-py27-cpu |
|
MXNet | mxnet-py36-cu90 |
mxnet-py27-cu90 mxnet-py27 |
mxnet-py27-cpu |
|
CNTK | cntk-py36-cu90 |
cntk-py27-cu90 cntk-py27 |
cntk-py27-cpu |
|
Chainer | chainer-py36-cu90 |
chainer-py27-cu90 chainer-py27 |
chainer-py27-cpu |
|
Caffe | caffe-py36-cu90 |
caffe-py27-cu90 caffe-py27 |
caffe-py27-cpu |
|
Caffe2 | caffe2-py36-cu90 caffe2-py36 caffe2 |
caffe2-py27-cu90 caffe2-py27 |
caffe2-py36-cpu caffe2-cpu |
caffe2-py27-cpu |
Torch | torch-cu90 |
torch-cu90 torch |
torch-cpu |
|
Darknet | darknet-cu90 |
darknet-cu90 darknet |
darknet-cpu |
Citation
@misc{ming2017deepo,
author = {Ming Yang},
title = {Deepo: set up deep learning environment in a single command line.},
year = {2017},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/ufoym/deepo}}
}
Contributing
We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please first open an issue and discuss the feature with us.
Licensing
Deepo is MIT licensed.
Deepo的更多相关文章
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (一)ubuntu18.04配置n ...
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (三)配置远程桌面连接访问dock ...
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (二)nvidia docker配 ...
- Vmvare + Ubuntu 16.04环境搭建 + 相关软件安装配置笔记【深度学习】
前言 由于学习与工作的需要,加上之前配置好的vmmachines都损坏了,我就重新弄一个ubuntu虚拟机,配置一下环境,给自己留个记录 1.文件 2.配置过程 1.在Vmware中新建虚拟机,自定义 ...
- 教你如何用Docker快速搭建深度学习环境
本教程搭建集 Tensorflow.Keras.Coffe.PyTorch 等深度学习框架于一身的环境,及jupyter. 本教程使用nvidia-docker启动实例,通过本教程可以从一个全新的Ub ...
- [AI] 切换cuda版本的万金油
1. 环境 ubuntu16.04 GTX1080Ti x 4 nvidia-418 cuda-10.1 pytorch1.0.0 目标:在最新的显卡驱动下,使用不同版本的cuda和深度学习框架来执行 ...
- docker出现如下错误:Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the docker daemon running?
在docker中配置deepo时出现了错误: 在出现这个错误之前,我是先用如下命令查看NVIDIA-docker是否安装成功. docker run --runtime=nvidia --rm nvi ...
- 服务器搭建远程docker深度学习环境
服务器搭建远程docker深度学习环境 本文大部分内容参考知乎文章 Docker+PyCharm快速搭建机器学习开发环境 搭建过程中出现ssh连接问题可以查看最后的注意事项 Docker Docker ...
随机推荐
- 为 Jupyter 添加目录
1.依次在 anaconda prompt 窗口中执行以下两句命令 pip install jupyter_contrib_nbextensions # 安装第三方包 jupyter contrib ...
- 逆向破解之160个CrackMe —— 028
CrackMe —— 028 160 CrackMe 是比较适合新手学习逆向破解的CrackMe的一个集合一共160个待逆向破解的程序 CrackMe:它们都是一些公开给别人尝试破解的小程序,制作 c ...
- BZOJ4241:历史研究(回滚莫队)
题意:给定N个数字,Q次询问,询问这个区间的最大加权众数是多少. 加权众数是指出现次数*数字大小.N,Q<1e5. 思路:不难发现可以N*sqrtN*logN的思路做,但是应该过不了. 这个Ns ...
- 【java】String与Date转换
String转Date String date=""; SimpleDateFormat format=new SimpleDateFo ...
- ESA2GJK1DH1K升级篇: 关于升级篇数据校验
前言 鉴于大家都希望升级的时候加入数据校验,所以就满足大家的要求. 其实我也希望自己做的足够的稳定可靠,让大家使用起来放心. 上一节测试了一节加入校验以后的操作方式,这节来详细的说一下校验部分的代码. ...
- shell 命令行
转:Davygeek 1. -eq //等于 -ne //不等于 -gt //大于 (greater ) -lt / ...
- centos里的压缩解压命令tar总结
压缩 tar czvf 压缩文件名称.tar.gz 文件或者目录名称 比如:tar czvf backup.tar.gz /etc,把/etc目录打包成文件backup.tar.gz c是打包 z是g ...
- bat无线热点设置
netsh wlan set hostednetwork mode=allow ssid=happyla key=1234567890netsh wlan start hostednetwork
- [HeadFrist-HTMLCSS学习笔记]第五章认识媒体:给网页添加图像
[HeadFrist-HTMLCSS学习笔记]第五章认识媒体:给网页添加图像 干货 JPEG.PNG.GIF有何不同 JPEG适合连续色调图像,如照片:不支持透明度:不支持动画:有损格式 PNG适合单 ...
- 【技术博客】使用PhpStorm和Xdebug实现Laravel工程的远程开发及调试
目录 使用PhpStorm和Xdebug实现Laravel工程的远程开发及调试 简介 PhpStorm中的远程开发 1. 配置服务器 2. 配置路径对应 3. 配置同步 4. 进行代码同步 5. 优点 ...