张宁    SceneCut: Joint Geometric and Object Segmentation for Indoor Scenes
    "链接:https://pan.baidu.com/s/1hpwb8IjtEpb3uTIncJbTUg
提取码:0wz1"

Trung T. Pham  , Thanh-Toan Do  , Niko Sünderhauf , Ian Reid

SceneCut:室内场景的联合几何和对象分割

This paper presents SceneCut, a novel approach to jointly discover previously unseen objects and non-object surfaces using a single RGB-D image. SceneCut’s joint reasoning over scene semantics and geometry allows a robot to detect and segment object instances in complex scenes where modern deep learning-based methods either fail to separate object instances, or fail to detect objects that were not seen during training. SceneCut automatically decomposes a scene into meaningful regions which either represent objects or scene surfaces. The decomposition is qualified by an unified energy function over objectness and geometric fitting. We show how this energy function can be optimized efficiently by utilizing hierarchical segmentation trees. Moreover, we leverage a pretrained convolutional oriented boundary network to predict accurate boundaries from images, which are used to construct high-quality region hierarchies. We evaluate SceneCut on several different indoor environments, and the results show that SceneCut significantly outperforms all the existing methods.

本文介绍了SceneCut,这是一种使用单个RGB-D图像联合发现以前看不见的物体和非物体表面的新方法。SceneCut对场景语义和几何的联合推理允许机器人在复杂场景中检测和分割对象实例,其中现代基于深度学习的方法无法分离对象实例,或者无法检测在训练期间未看到的对象。SceneCut会自动将场景分解为有意义的区域,这些区域代表对象或场景表面。通过对象性和几何拟合的统一能量函数来限定分解。我们展示了如何通过利用分层分割树有效地优化这种能量函数。此外,我们利用预训练的卷积导向边界网络来预测图像的准确边界,这些边界用于构建高质量的区域层次结构。我们在几个不同的室内环境中评估SceneCut,结果表明SceneCut明显优于所有现有方法。

泡泡一分钟:SceneCut: Joint Geometric and Object Segmentation for Indoor Scenes的更多相关文章

  1. 泡泡一分钟:Using Geometric Features to Represent Near-Contact Behavior in Robotic Grasping

    张宁  Using Geometric Features to Represent Near-Contact Behavior in Robotic Grasping链接:https://pan.ba ...

  2. PaperNotes Instance-Level Salient Object Segmentation

    title: PaperNotes Instance-Level Salient Object Segmentation comments: true date: 2017-12-20 13:53:1 ...

  3. 论文笔记:Capsules for Object Segmentation

    Capsules for Object Segmentation 2018-04-16  21:49:14 Introduction: ----

  4. 泡泡一分钟: Deep-LK for Efficient Adaptive Object Tracking

    Deep-LK for Efficient Adaptive Object Tracking "链接:https://pan.baidu.com/s/1Hn-CVgiR7WV0jvaYBv5 ...

  5. 泡泡一分钟:Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning

    张宁 Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning 多 ...

  6. 泡泡一分钟:A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area

    A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area 城市车辆定位的多位置联合 ...

  7. 泡泡一分钟:Geometric and Physical Constraints for Drone-Based Head Plane Crowd Density Estimation

    张宁 Geometric and Physical Constraints for Drone-Based Head Plane Crowd Density Estimation 基于无人机的向下平面 ...

  8. 泡泡一分钟:Semantic Labeling of Indoor Environments from 3D RGB Maps

    张宁 Semantic Labeling of Indoor Environments from 3D RGB Maps Manuel Brucker,  Maximilian Durner,  Ra ...

  9. 泡泡一分钟:Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization

    Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization 利用回归森林中的点和线进行RGB-D ...

随机推荐

  1. 怎么保证redis集群的高并发和高可用的?

    redis不支持高并发的瓶颈在哪里? 单机.单机版的redis支持上万到几万的QPS不等. 主要根据你的业务操作的复杂性,redis提供了很多复杂的操作,lua脚本. 2.如果redis要支撑超过10 ...

  2. 《奋斗吧!菜鸟》 第九次作业:Beta冲刺 Scrum meeting 2

    项目 内容 这个作业属于哪个课程 任课教师链接 作业要求 https://www.cnblogs.com/nwnu-daizh/p/11056511.html 团队名称 奋斗吧!菜鸟 作业学习目标 掌 ...

  3. 兼容火狐,Chrome,IE6,IE7,IE8的HTML换行写法

    本文链接:https://java-er.com/blog/html-break-line-firefox-chrome/ 兼容火狐,Chrome,IE6,IE7,IE8的HTML换行写法1.任意数据 ...

  4. c++中形参为引用和非引用时调用构造函数

    #include<iostream> using namespace std; class numbered { private:static int seq; public: numbe ...

  5. sql注入和防sql注入

    sql注入: from pymysql import * def main(): # 创建连接 conn = connect(host="127.0.0.1", port=3306 ...

  6. 数据库基准测试标准 TPC-C or TPC-H or TPC-DS

    针对数据库不同的使用场景TPC组织发布了多项测试标准.其中被业界广泛接受和使用的有TPC-C .TPC-H和TPC-DS. TPC-C: Approved in July of 1992, TPC B ...

  7. 06.volatile关键字

    volatile volatile关键字的主要作用是使变量在多个线程间可见 使用方法: private volatile int number=0; 图示: 两个线程t1和t2共享一份数据,int a ...

  8. WebAPI学习

    WebAPI概述 今天的web计算平台包含了广泛的功能,其中的大部分均可以通过API(应用程序编程接口)访问. web平台归为6个基本设施,都会用到webapi,包括存储服务.消息服务.计算服务.信息 ...

  9. (10)打鸡儿教你Vue.js

    事件处理器 <div id="app"> <button v-on:click="counter += 1">增加 1</butt ...

  10. 《挑战30天C++入门极限》新手入门:C/C++中数组和指针类型的关系

        新手入门:C/C++中数组和指针类型的关系 对于数组和多维数组的内容这里就不再讨论了,前面的教程有过说明,这里主要讲述的数组和指针类型的关系,通过对他们之间关系的了解可以更加深入的掌握数组和指 ...