泡泡一分钟:SceneCut: Joint Geometric and Object Segmentation for Indoor Scenes
张宁 SceneCut: Joint Geometric and Object Segmentation for Indoor Scenes
"链接:https://pan.baidu.com/s/1hpwb8IjtEpb3uTIncJbTUg
提取码:0wz1"
Trung T. Pham , Thanh-Toan Do , Niko Sünderhauf , Ian Reid
SceneCut:室内场景的联合几何和对象分割
This paper presents SceneCut, a novel approach to jointly discover previously unseen objects and non-object surfaces using a single RGB-D image. SceneCut’s joint reasoning over scene semantics and geometry allows a robot to detect and segment object instances in complex scenes where modern deep learning-based methods either fail to separate object instances, or fail to detect objects that were not seen during training. SceneCut automatically decomposes a scene into meaningful regions which either represent objects or scene surfaces. The decomposition is qualified by an unified energy function over objectness and geometric fitting. We show how this energy function can be optimized efficiently by utilizing hierarchical segmentation trees. Moreover, we leverage a pretrained convolutional oriented boundary network to predict accurate boundaries from images, which are used to construct high-quality region hierarchies. We evaluate SceneCut on several different indoor environments, and the results show that SceneCut significantly outperforms all the existing methods.
本文介绍了SceneCut,这是一种使用单个RGB-D图像联合发现以前看不见的物体和非物体表面的新方法。SceneCut对场景语义和几何的联合推理允许机器人在复杂场景中检测和分割对象实例,其中现代基于深度学习的方法无法分离对象实例,或者无法检测在训练期间未看到的对象。SceneCut会自动将场景分解为有意义的区域,这些区域代表对象或场景表面。通过对象性和几何拟合的统一能量函数来限定分解。我们展示了如何通过利用分层分割树有效地优化这种能量函数。此外,我们利用预训练的卷积导向边界网络来预测图像的准确边界,这些边界用于构建高质量的区域层次结构。我们在几个不同的室内环境中评估SceneCut,结果表明SceneCut明显优于所有现有方法。
泡泡一分钟:SceneCut: Joint Geometric and Object Segmentation for Indoor Scenes的更多相关文章
- 泡泡一分钟:Using Geometric Features to Represent Near-Contact Behavior in Robotic Grasping
张宁 Using Geometric Features to Represent Near-Contact Behavior in Robotic Grasping链接:https://pan.ba ...
- PaperNotes Instance-Level Salient Object Segmentation
title: PaperNotes Instance-Level Salient Object Segmentation comments: true date: 2017-12-20 13:53:1 ...
- 论文笔记:Capsules for Object Segmentation
Capsules for Object Segmentation 2018-04-16 21:49:14 Introduction: ----
- 泡泡一分钟: Deep-LK for Efficient Adaptive Object Tracking
Deep-LK for Efficient Adaptive Object Tracking "链接:https://pan.baidu.com/s/1Hn-CVgiR7WV0jvaYBv5 ...
- 泡泡一分钟:Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning
张宁 Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning 多 ...
- 泡泡一分钟:A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area
A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area 城市车辆定位的多位置联合 ...
- 泡泡一分钟:Geometric and Physical Constraints for Drone-Based Head Plane Crowd Density Estimation
张宁 Geometric and Physical Constraints for Drone-Based Head Plane Crowd Density Estimation 基于无人机的向下平面 ...
- 泡泡一分钟:Semantic Labeling of Indoor Environments from 3D RGB Maps
张宁 Semantic Labeling of Indoor Environments from 3D RGB Maps Manuel Brucker, Maximilian Durner, Ra ...
- 泡泡一分钟:Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization
Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization 利用回归森林中的点和线进行RGB-D ...
随机推荐
- 用 Python 加密文件
生活中,有时候我们需要对一些重要的文件进行加密,Python 提供了诸如 hashlib,base64 等便于使用的加密库. 但对于日常学习而言,我们可以借助异或操作,实现一个简单的文件加密程序,从而 ...
- GITHUB使用指南、
一.安装Git1.通过官网(https://www.git-scm.com/download/)下载git,进入官网,如下图所示:2.选择对应的操作系统后,页面跳转并自动下载对应的Git版本,如下图所 ...
- c++的动态绑定和静态绑定及多态的实现原理(摘)
C++多态的实现原理 为了支持c++的多态性,才用了动态绑定和静态绑定.理解它们的区别有助于更好的理解多态性,以及在编程的过程中避免犯错误. 需要理解四个名词:对象的静态类型:对象在声明时采用的类型. ...
- js 定时器 执行一次和重复执行
1- 执行一次(延时定时器) var t1 = window.setTimeout(function() { console.log('1秒钟之后执行了') },1000) window.clearT ...
- [NgRx 8] Basic of NgRx8
1. First step is creating action creator Action name should be clear which page, which functionality ...
- js使用WebUploader做大文件的分块和断点续传
1 背景 用户本地有一份txt或者csv文件,无论是从业务数据库导出.还是其他途径获取,当需要使用蚂蚁的大数据分析工具进行数据加工.挖掘和共创应用的时候,首先要将本地文件上传至ODPS,普通的小文件通 ...
- loj #10131
抽离题意 求删除一条树边和一条非树边后将图分成不连通的两部分的方案数 对于一棵树,再加入一条边就会产生环.若只有一个环,说明只加入了一条非树边 (x, y),记 lca 为 l, 那么 对于任意一条 ...
- COGS 1151 活动安排
- 有 N 场活动,每场活动在特定的时间需要占用场地. - 如果有两场活动需要同一时间占用场地,则不能同时举行 - 问最多能举行多少场活动? 将所有活动按照结束时间从早到晚排序后贪心即可 具体思路看代 ...
- 21、Shuffle原理剖析与源码分析
一.普通shuffle原理 1.图解 假设有一个节点上面运行了4个 ShuffleMapTask,然后这个节点上只有2个 cpu core.假如有另外一台节点,上面也运行了4个ResultTask,现 ...
- 18、TaskScheduler原理剖析与源码分析
一.源码分析 ###入口 ###org.apache.spark.scheduler/DAGScheduler.scala // 最后,针对stage的task,创建TaskSet对象,调用taskS ...