张宁    SceneCut: Joint Geometric and Object Segmentation for Indoor Scenes
    "链接:https://pan.baidu.com/s/1hpwb8IjtEpb3uTIncJbTUg
提取码:0wz1"

Trung T. Pham  , Thanh-Toan Do  , Niko Sünderhauf , Ian Reid

SceneCut:室内场景的联合几何和对象分割

This paper presents SceneCut, a novel approach to jointly discover previously unseen objects and non-object surfaces using a single RGB-D image. SceneCut’s joint reasoning over scene semantics and geometry allows a robot to detect and segment object instances in complex scenes where modern deep learning-based methods either fail to separate object instances, or fail to detect objects that were not seen during training. SceneCut automatically decomposes a scene into meaningful regions which either represent objects or scene surfaces. The decomposition is qualified by an unified energy function over objectness and geometric fitting. We show how this energy function can be optimized efficiently by utilizing hierarchical segmentation trees. Moreover, we leverage a pretrained convolutional oriented boundary network to predict accurate boundaries from images, which are used to construct high-quality region hierarchies. We evaluate SceneCut on several different indoor environments, and the results show that SceneCut significantly outperforms all the existing methods.

本文介绍了SceneCut,这是一种使用单个RGB-D图像联合发现以前看不见的物体和非物体表面的新方法。SceneCut对场景语义和几何的联合推理允许机器人在复杂场景中检测和分割对象实例,其中现代基于深度学习的方法无法分离对象实例,或者无法检测在训练期间未看到的对象。SceneCut会自动将场景分解为有意义的区域,这些区域代表对象或场景表面。通过对象性和几何拟合的统一能量函数来限定分解。我们展示了如何通过利用分层分割树有效地优化这种能量函数。此外,我们利用预训练的卷积导向边界网络来预测图像的准确边界,这些边界用于构建高质量的区域层次结构。我们在几个不同的室内环境中评估SceneCut,结果表明SceneCut明显优于所有现有方法。

泡泡一分钟:SceneCut: Joint Geometric and Object Segmentation for Indoor Scenes的更多相关文章

  1. 泡泡一分钟:Using Geometric Features to Represent Near-Contact Behavior in Robotic Grasping

    张宁  Using Geometric Features to Represent Near-Contact Behavior in Robotic Grasping链接:https://pan.ba ...

  2. PaperNotes Instance-Level Salient Object Segmentation

    title: PaperNotes Instance-Level Salient Object Segmentation comments: true date: 2017-12-20 13:53:1 ...

  3. 论文笔记:Capsules for Object Segmentation

    Capsules for Object Segmentation 2018-04-16  21:49:14 Introduction: ----

  4. 泡泡一分钟: Deep-LK for Efficient Adaptive Object Tracking

    Deep-LK for Efficient Adaptive Object Tracking "链接:https://pan.baidu.com/s/1Hn-CVgiR7WV0jvaYBv5 ...

  5. 泡泡一分钟:Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning

    张宁 Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning 多 ...

  6. 泡泡一分钟:A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area

    A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area 城市车辆定位的多位置联合 ...

  7. 泡泡一分钟:Geometric and Physical Constraints for Drone-Based Head Plane Crowd Density Estimation

    张宁 Geometric and Physical Constraints for Drone-Based Head Plane Crowd Density Estimation 基于无人机的向下平面 ...

  8. 泡泡一分钟:Semantic Labeling of Indoor Environments from 3D RGB Maps

    张宁 Semantic Labeling of Indoor Environments from 3D RGB Maps Manuel Brucker,  Maximilian Durner,  Ra ...

  9. 泡泡一分钟:Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization

    Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization 利用回归森林中的点和线进行RGB-D ...

随机推荐

  1. destoon模板存放调取规则

    一.模板存放及调用规则      模板存放于系统 template 目录,template 目录下的一个目录例如 template/default/ 即为一套模板 模板文件以 .htm 为扩展名,可直 ...

  2. Tensorflow细节-P190-输入文件队列

    以下代码要学会几个地方 1.filename = ('data.tfrecords-%.5d-of-%.5d' % (i, num_shards)) 这个东西就是要会data.tfrecords-%. ...

  3. 洛谷 P1854 花店橱窗布置 题解

    Analysis 给定一个f*v的矩阵 要求从第一行走到第f行,每行取走一个数, 且该行所取的数必须必上一行所取的数的列数大 , 求所能取走的最大值 注意每一行所取走的数字的列数必须大于等该行的行号 ...

  4. IDEA激活码(直到2020年6月)

    K6IXATEF43-eyJsaWNlbnNlSWQiOiJLNklYQVRFRjQzIiwibGljZW5zZWVOYW1lIjoi5o6I5p2D5Luj55CG5ZWGOiBodHRwOi8va ...

  5. NOIP前做题记录

    鉴于某些原因(主要是懒)就不一题一题写了,代码直接去\(OJ\)上看吧 CodeChef Making Change 传送门 完全没看懂题解在讲什么(一定是因为题解公式打崩的原因才不是曲明英语太差呢- ...

  6. python 嵌套字典取值增强版

    def getdictvalue(d,code): result=[] if isinstance(d, dict) : try: value = d[code] result.append(valu ...

  7. JAVA的日期类DATE

    好记性不如烂笔头. 1:常见场景  字符串转时间格式,日期转换字符串(在前后端交互 json) 导入包(好像我的IDEA 不知道装了什么插件 会自动补齐提示) import java.text.Par ...

  8. load、loads和 dump、dumps的区别

    相同点 load 和loads 都是实现“反序列化” 区别 1.loadsloads针对内存对象loads: 将 字符串 转换为 字典 # 这是一个字符串'{"b": 2, &qu ...

  9. element-ui表格显示html格式

    <el-table-column type="String" label="内容" prop="tpl" width="58 ...

  10. google镜像《转》

    最新谷歌镜像列表 https://jsproxy-demo.ml 谷歌镜像F1http://go.yuxuantech.com 谷歌镜像F1,非SSLhttps://www.siwa88.net 谷歌 ...