点此看题面

大致题意: 给定自然数\(n\),让你求出方程\(\sqrt{x-\sqrt n}+\sqrt y-\sqrt z=0\)的自然数解\(x,y,z\)的数量以及所有解\(xyz\)之和。

推式子

这道题应该不是很难。

移项可以得到:

\[\sqrt{x-\sqrt n}=\sqrt z-\sqrt y
\]

两边同时平方:

\[x-\sqrt n=y+z-2\sqrt {yz}
\]

则我们可以得出第一个结论:

当\(n\)为完全平方数,即\(\sqrt n\)为整数时,有无数组解,直接输出\(infty\)。

否则,我们可知:

\[\begin{cases}x=y+z,&①\\\sqrt n=2\sqrt{yz}&②\end{cases}
\]

其中,对于\(②\)式,我们再同时平方得到:

\[n=4yz
\]

有了这个式子,加上前面\(①\)式中得出的\(x=y+z\),我们就可以轻松得出结论:

若\(n\)不为\(4\)的倍数,则无解,直接输出"0 0"。

否则的话,我们就\(O(\frac{\sqrt n}2)\)枚举\(y\)(由原式易知\(y<z\)),然后就可以求出答案了。

具体实现详见代码。

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define X 1000000007
#define Inc(x,y) ((x+=(y))>=X&&(x-=X))
using namespace std;
int n;
int main()
{
RI Ttot,i,ans1,ans2;scanf("%d",&Ttot);W(Ttot--)
{
if(scanf("%d",&n),(int)sqrt(n)*(int)sqrt(n)==n) {puts("infty");continue;}//若n为完全平方数,有无数组解
if(n%4) {puts("0 0");continue;}//若n不为4的倍数,无解
for(n/=4,ans1=ans2=0,i=1;1LL*i*i<=n;++i) !(n%i)&&(++ans1,Inc(ans2,1LL*n*(i+n/i)%X));//枚举y,统计答案
printf("%d %d\n",ans1,ans2);//输出
}return 0;
}

【Comet OJ - Contest #0 A】解方程(数学水题)的更多相关文章

  1. Comet OJ - Contest #0题解

    传送门 菜爆了--总共只有一道题会做的--而且也没有短裙好难过 为啥必须得有手机才能注册账号啊喂--歧视么-- \(A\) 解方程 推一下柿子大概就是 \[x-\sqrt{n}=y+z+2\sqrt{ ...

  2. [Comet OJ - Contest #6 C][48C 2279]一道树题_树

    一道树题 题目大意: 给定一棵树,边的编号为读入顺序.现在规定,区间$[L, R]$的贡献$S(L,R)$为把编号在该区间里的边都连上后,当前形成的森林中点数大于等于$2$的联通块个数. 求$\sum ...

  3. Comet OJ - Contest #0 A题 解方程 (数学)

    题目描述 小象同学在初等教育时期遇到了一个复杂的数学题,题目是这样的: 给定自然数 nn,确定关于 x, y, zx,y,z 的不定方程 \displaystyle \sqrt{x - \sqrt{n ...

  4. Comet OJ Contest #0 解方程(暴力)

    题意: 给定自然数n,求满足$\displaystyle \sqrt{x-\sqrt{n}}=\sqrt{z}-\sqrt{y}$的x,y,z,输出解的个数以及所有解 xyz的和 n<=1e9, ...

  5. Comet OJ - Contest #0

    A:化成x-√n=y+z-√4yz的形式,则显然n是完全平方数时有无数组解,否则要求n=4yz,暴力枚举n的因数即可.注意判断根号下是否不小于0. #include<iostream> # ...

  6. Comet OJ - Contest #7 C 临时翻出来的题(容斥+状压)

    题意 https://www.cometoj.com/contest/52/problem/C?problem_id=2416 思路 这里提供一种容斥的写法(?好像网上没看到这种写法) 题目要求编号为 ...

  7. Comet OJ - Contest #8

    Comet OJ - Contest #8 传送门 A.杀手皇后 签到. Code #include <bits/stdc++.h> using namespace std; typede ...

  8. Comet OJ - Contest #2 简要题解

    Comet OJ - Contest #2 简要题解 cometoj A 模拟,复杂度是对数级的. code B 易知\(p\in[l,r]\),且最终的利润关于\(p\)的表达式为\(\frac{( ...

  9. Comet OJ - Contest #2简要题解

    Comet OJ - Contest #2简要题解 前言: 我没有小裙子,我太菜了. A 因自过去而至的残响起舞 https://www.cometoj.com/contest/37/problem/ ...

随机推荐

  1. LeetCode 209:最小长度的子数组 Minimum Size Subarray Sum

    公众号: 爱写bug(ID:icodebugs) 作者:爱写bug 给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的连续子数组.如果不存在符合条件的连续子 ...

  2. spring tomcat启动 请求处理

    onRefresh(); protected void onRefresh() { try { createEmbeddedServletContainer(); } } private void c ...

  3. Express 框架以及与http-proxy-middleware整合实现代理

    1.Express的简单使用 1.简介 Express 是一个简洁而灵活的 node.js Web应用框架, 提供了一系列强大特性帮助你创建各种 Web 应用,和丰富的 HTTP 工具. 使用 Exp ...

  4. Redis 主从同步+哨兵

    简介 通过使用 Redis 自带“主从同步+哨兵守护”功能提高Redis稳定性. 主从同步:保障数据主从数据实时同步. 哨兵:实时监控主redis如果故障,将从redis作为主使用. 环境: 系统:C ...

  5. springboot只能一个main方法解决办法

    pom.xml修改properties,增加这行 <start-class>com.eshore.main.SpringBootStarter</start-class> 或者 ...

  6. WPF绑定 mode Using System.ComponentModel; IPropertyChanged, if(this.PropertyChanged!=null){ this.PropertyChanged.Invoke(this,new PropertyChangedEventArgs("Name"))

    Mode,它的类型为BindingMode的枚举类型,可以取TwoWay.OneWay.OnTime.OneWayToSource.Default. oneWay:使用 OneWay 绑定时,每当源发 ...

  7. Java学习——枚举类

    Java学习——枚举类 摘要:本文主要介绍了Java的枚举类. 部分内容来自以下博客: https://www.cnblogs.com/sister/p/4700702.html https://bl ...

  8. Python【day 11】迭代器

    迭代器-用 1.迭代器的概念 1.可迭代对象-iterable str.list.tuple.dict.set.open().range() 2.可迭代对象的概念: 其数据类型的执行方法中含有__it ...

  9. Python分页

    # -*-coding:utf-8-*- # Author:Ds from django.utils.safestring import mark_safe from django.http.requ ...

  10. C#中将long浮点数格式化为{H:min:s.ms}格式的字符串的方法

    场景 表示时间的数据格式为浮点数,如下: 需要将其格式化为{H:min:s.ms}格式的字符串,效果如下: 注: 博客主页:https://blog.csdn.net/badao_liumang_qi ...