传送门

Description

一个长度为\(N\)的序列, 每个位置都可以被染成 \(M\)种颜色中的某一种.

出现次数恰好为 \(S\)的颜色种数有\(i\)种, 会产生\(w_i\)的愉悦度.

对于所有染色方案, 能获得的愉悦度的和对\(1004535809\)取模的结果.

Solution 

\[ans=\sum_{i=0}^{lim} w_i\cdot num_i
\]

how to get \(num_i\)?

\(f_i\) : the number of occurrences of at least i colors is exactly the number of S

so \(f_i=\binom{m}{i}\cdot \frac{n!}{(s!)^i(n-iS)!}\cdot(m-i)^{n-iS}\)

According to the binomial inversion, we can know that:

\[num_i=\sum_{j=i}^{lim}(-1)^{j-i}\binom{j}{i}f[j]
\]

so

\[num_i=\frac{1}{i!}\sum_{j=i}^{lim} \frac{(-1)^{j-i}}{(j-i)!}\cdot(f[j]\cdot j!)
\]

we can use NTT.

Code 

#include<bits/stdc++.h>
#define reg register
#define ll long long
#define db double
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
}
const int P=1004535809,G[2]={3,334845270},NN=5e5+5;
int Mul(int x,int y){return 1ll*x*y%P;}
int Add(int x,int y){return (x+y)%P;}
const int MN=1e7+5,MM=1e5+5,MS=155;
int N,M,S,W[MM],f[MM],fac[MN],inv[MN];
int fpow(int x,int y){int r=1;for(;y;y>>=1,x=Mul(x,x))if(y&1)r=Mul(r,x);return r;}
int C(int x,int y){if(x<0||y<0||x<y)return 0;return Mul(fac[x],Mul(inv[y],inv[x-y]));}
int a[NN],b[NN],pos[NN];
void NTT(int *a,bool ty,int L)
{
reg int i,j,k,w,wn,x,y;
for(i=0;i<L;++i) if(pos[i]<i) swap(a[i],a[pos[i]]);
for(i=1;i<L;i<<=1)
{
wn=fpow(G[ty],(P-1)/(i<<1));
for(j=0;j<L;j+=(i<<1))
for(w=1,k=0;k<i;++k,w=Mul(w,wn))
{
x=a[j+k],y=Mul(a[j+i+k],w);
a[j+k]=Add(x,y);a[j+i+k]=Add(x,P-y);
}
}
if(ty)for(j=fpow(L,P-2),i=0;i<L;++i)a[i]=Mul(a[i],j);
}
int ans;
int main()
{
N=read(),M=read(),S=read();
reg int i,lim;
for(i=0;i<=M;++i) W[i]=read();
lim=max(N,M);
for(fac[0]=i=1;i<=lim;++i) fac[i]=Mul(fac[i-1],i);
for(inv[0]=inv[1]=1,i=2;i<=lim;++i) inv[i]=Mul(inv[P%i],(P-P/i));
for(i=1;i<=lim;++i) inv[i]=Mul(inv[i],inv[i-1]);
lim=min(M,N/S);
for(i=0;i<=lim;++i)
f[i]=Mul(Mul(C(M,i),Mul(fac[N],fpow(inv[S],i))),Mul(inv[N-i*S],fpow(M-i,N-i*S)));
for(i=0;i<=lim;++i) b[lim-i+1]=Mul(f[i],fac[i]);
for(i=0;i<=lim;++i) a[i]=(i&1)?(P-inv[i]):inv[i];
int MA;
for(MA=1;MA<=(lim<<1);MA<<=1);
for(i=0;i<MA;++i) pos[i]=(pos[i>>1]>>1)|((i&1)*(MA>>1));
NTT(a,0,MA);NTT(b,0,MA);
for(i=0;i<MA;++i) a[i]=Mul(a[i],b[i]);
NTT(a,1,MA);
for(i=0;i<=lim;++i) ans=Add(ans,Mul(W[i],Mul(a[lim-i+1],inv[i])));
return 0*printf("%d\n",ans);
}

Blog来自PaperCloud,未经允许,请勿转载,TKS!

[HAOI 2018]染色的更多相关文章

  1. HAOI 2018 染色(容斥+NTT)

    题意 https://loj.ac/problem/2527 思路 设 \(f(k)\) 为强制选择 \(k\) 个颜色出现 \(s\) 种,其余任取的方案数. 则有 \[ f(k)={m\choos ...

  2. Solution -「HAOI 2018」「洛谷 P4491」染色

    \(\mathcal{Description}\)   Link.   用 \(m\) 种颜色为长为 \(n\) 的序列染色,每个位置一种颜色.对于一种染色方案,其价值为 \(w(\text{出现恰 ...

  3. 「HAOI 2018」染色

    题目链接 戳我 \(Solution\) 观察题目发现恰好出现了\(s\)次的颜色有\(k\)种,不太好弄. 所以我们设\(a[i]\)表示为恰好出现了\(s\)次的颜色有至少\(i\)种的方案数,然 ...

  4. HAOI树上染色

    Description : 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后, ...

  5. [BJOI 2018]染色

    题意:求01成立. 并查集维护,记录一个变量判断决策. #include<bits/stdc++.h> using namespace std; #define int long long ...

  6. HAOI 2018 Round 1 题解

    无聊了开一套省选题刷刷--u1s1 感觉三个题都不错,难度也挺有梯度,是一道标准的省选难度的题(话说 CSP 前你刷省选题干嘛/ts/ts) 小 C 珂海星 T1:P4495 [HAOI2018]奇怪 ...

  7. luogu 4429 染色

    bjoi 2018 染色 推了个错误结论得了60分? 题目大意: 一个无重边和自环的无向图,并且对每个点分别给了一个大小为2的颜色集合,只能从这个集合中选一种颜色给这个点染色 求一个染色方案使得没有两 ...

  8. [HAOI 2015]树上染色

    Description 题库链接 给出一棵 \(n\) 个节点的树,边有权值.让你将树上 \(k\) 个点染黑,剩余 \(n-k\) 个点染白.染色后记一种染色方案的价值为黑点间两两距离和以及白点间两 ...

  9. 洛谷 P3177 树上染色 解题报告

    P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...

随机推荐

  1. SpringBoot中yml配置文件

    1.yml配置文件书写格式 格式是在普通配置文件中以“.”分割的属性名称,该为“: ”和换行. 例子: //普通格式 spring.datasource.driver-class-name=com.m ...

  2. 如何搭建java web的开发环境,以及mysql的安装过程

    1 http协议响应 http响应由三部分组成: 状态行: 响应报头: 响应正文: 1 下载JDK,安装并配置环境变量 2 配置环境变量的步骤: 在系统变量栏中单击新建按钮,新建变量JAVA_HOME ...

  3. nginx反向代理前后端分离项目(后端多台)

    目前软件架构都比较流行前后端分离,前后端的分离也实现了前后端架构的分离,带来的好处 —— 整个项目的开发权重往前移,实现真正的前后端解耦,动态资源和静态资源分离,提高了性能和扩展性. 通常Spring ...

  4. 《我是一只IT小小鸟》(续)读书笔记——第八周

    第三位作者强调了大学阶段规划的重要性,作者初入大学,一切都很新鲜想尝试,却缺乏对学习生活的规划.最终导致的是学习成绩的下降.其实编程也是一样,我们常常感到自己和那些大神的差距,感慨过后,往往也就罢了. ...

  5. 判断OpenCV是否为共享库,Windows基于CMake编译Caffe需要opencv共享库

    判断OpenCV是否为共享库,Windows基于CMake编译Caffe需要opencv共享库 TLDR 只考虑windows下opencv预编译包的情况. 对于opencv2.4.x系列,cmake ...

  6. H3C IEEE 802.11无线局域网工作组

  7. Linux正则表达式、shell基础、文件查找及打包压缩

    Linux正则表达式.shell基础.文件查找及打包压缩 一.正则表达式 Linux正则表达式分为2类: 1.基本正则表达式(BRE) 2.扩展正则表达式(ERE) 两者的区别: 1.使用扩展正则表达 ...

  8. 一个.Net的混淆防反编译工具ConfuserEx

    给大家推荐一个.Net的混淆防反编译工具ConfuserEx. 由于项目中要用到.Net的混淆防反编译工具. 在网上找了很多.Net混淆或混淆防反编译工具,如.NET Reactor.Dotfusca ...

  9. java 的任意进制间转换

    直接上代码: public class Main { public static void main(String[] args) { // TODO Auto-generated method st ...

  10. Codeforces C. Split a Number(贪心大数运算)

    题目描述: time limit per test 2 seconds memory limit per test 512 megabytes input standard input output ...