背景

  deep ConvNet兴起,VGG16应用在图像分类任务上表现良好,本文用VGG16来解决检测任务。SPP NET存在CNN层不能fine tuning的缺点,且之前的方法训练都是分为多个阶段,特征提取+SVM分类+边框回归,这些问题在Fast R-CNN上都得到了解决。

方法

  网络模型采用VGG16结构,跟SPP NET相比有如下改进。

  ROI pooling

  将最后的max pooling层换成RoI pooling层,可以认为是SPP NET的特殊情况,只有一层金字塔,feature map被分为H*W个bin,作max pooling。

  bbox regressor

  网络末尾采用两个不同的全连接层,分别输出分类和位置结果,实现了end-to-end的训练过程。

  CNNs参数更新

  其实SPP NET也并不是不能更新CNNs的参数,只是这样开销太大,这是因为SPP NET先是将一堆图片的ROI求出来,打乱后随机取N张训练,这些ROI可能来自于很多不同的图片,这样如果要进行反向传播,必须保存这些图片训练中各层的feature map,开销巨大;Fast R-CNN采用了分层的思想,只在R=2张原图中取N个ROI,这样只用计算存储两张图片,开销大大降低。

总结

  是在SPP NET的基础上做出的改进,让训练过程变成end-to-end,整个网络的参数都能更新。

缺点

  ROI的提取采用的还是SS方法。  

目标检测论文解读3——Fast R-CNN的更多相关文章

  1. AAAI2019 | 基于区域分解集成的目标检测 论文解读

    Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学 ...

  2. 目标检测论文解读5——YOLO v1

    背景 之前热门的目标检测方法都是two stage的,即分为region proposal和classification两个阶段,本文是对one stage方法的初次探索. 方法 首先看一下模型的网络 ...

  3. 目标检测论文解读1——Rich feature hierarchies for accurate object detection and semantic segmentation

    背景 在2012 Imagenet LSVRC比赛中,Alexnet以15.3%的top-5 错误率轻松拔得头筹(第二名top-5错误率为26.2%).由此,ConvNet的潜力受到广泛认可,一炮而红 ...

  4. 目标检测论文解读10——DSSD

    背景 SSD算法在检测小目标时精度并不高,本文是在在SSD的基础上做出一些改进,引入卷积层,能综合上下文信息,提高模型性能. 理解 Q1:DSSD和SSD的区别有哪些? (1)SSD是一层一层下采样, ...

  5. 目标检测论文解读13——FPN

    引言 对于小目标通常需要用到多尺度检测,作者提出的FPN是一种快速且效果好的多尺度检测方法. 方法 a,b,c是之前的方法,其中a,c用到了多尺度检测的思想,但他们都存在明显的缺点. a方法:把每图片 ...

  6. 目标检测论文解读12——RetinaNet

    引言 这篇论文深刻分析了one-stage的模型精度比two-stage更差的原因,并提出Focal Loss提高精度. 思路 在论文中,作者指出,造成one-stage模型精度差的原因主要是:正负样 ...

  7. 目标检测论文解读4——Faster R-CNN

    背景 Fast R-CNN中的region proposal阶段所采用的SS算法成为了检测网络的速度瓶颈,本文是在Fast R-CNN基础上采用RPN(Region Proposal Networks ...

  8. 目标检测论文解读9——R-FCN

    背景 基于ResNet 101的Faster RCNN速度很慢,本文通过提出Position-sensitive score maps(位置敏感分值图)来给模型加速. 方法 首先分析一下,为什么基于R ...

  9. 目标检测论文解读6——SSD

    背景 R-CNN系列算法检测速度不够快,YOLO v1检测准确率较低,而且无法检测到密集目标. 方法 SSD算法跟YOLO类似,都属于one stage的算法,即通过回归算法直接从原图得到预测结果,为 ...

随机推荐

  1. PATA1075 PAT Judge (25 分)

    The ranklist of PAT is generated from the status list, which shows the scores of the submissions. Th ...

  2. [BJOI2019]勘破神机(第一类斯特林数,斐波那契数列)

    真的是好题,只不过强行多合一有点过分了…… 题目大意: $T$ 组数据.每个测试点中 $m$ 相同. 对于每组数据,给定 $l,r,k$,请求出 $\dfrac{1}{r-l+1}\sum\limit ...

  3. [LeetCode] 885. Spiral Matrix III 螺旋矩阵之三

    On a 2 dimensional grid with R rows and C columns, we start at (r0, c0) facing east. Here, the north ...

  4. [LeetCode] 598. Range Addition II 范围相加之二

    Given an m * n matrix M initialized with all 0's and several update operations. Operations are repre ...

  5. [LeetCode] 74. Search a 2D Matrix 搜索一个二维矩阵

    Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the follo ...

  6. FWT-快速沃尔什变换

    FWT-快速沃尔什变换 FWT有啥用啊 我们知道,FFT可以解决多项式的卷积,即 \[ C_k=\sum_{i+j=k}A_i*B_j \] 如果将操作符换一下,换成集合运算符 比如 \[ C_k=\ ...

  7. Lambda 表达式已阅

    Lambda 表达式已阅 君子之间淡如水,何谓淡如水?并不时常想起,但却无处不在. 背景:This is f**king why we code? 可以让Java 代码异常简洁的Lambda 表达式, ...

  8. 实验一 Linux基础与Java开发环境

    实验一 (一)实验内容 基于命令行和IDE(Intellj IDEA 简易教程http://www.cnblogs.com/rocedu/p/4421202.html)进行简单的Java程序编辑.编译 ...

  9. long 在不同操作系统下所占用的字节数

    不同平台下C\C++数值数据类型长度如下: 类型 win32 win64 linux32 linux64 其中long类型和指针类型需要特别注意,编写跨平台的软件时尽量不要使用long类型,或者需要对 ...

  10. django实战(四)--修改数据

    这节我们实现修改数据的功能,惯例,还是先上代码: urls.py urlpatterns=[ path('curd/edit/',views.curd_edit,name='curdedit'), p ...