KL散度=交叉熵-熵
- 熵:可以表示一个事件A的自信息量,也就是A包含多少信息。
- KL散度:可以用来表示从事件A的角度来看,事件B有多大不同。
- 交叉熵:可以用来表示从事件A的角度来看,如何描述事件B。
一种信息论的解释是:
- 熵的意义是对A事件中的随机变量进行编码所需的最小字节数。
- KL散度的意义是“额外所需的编码长度”如果我们用B的编码来表示A。
- 交叉熵指的是当你用B作为密码本来表示A时所需要的“平均的编码长度”。
一、熵
1.定义
衡量一个事件所包含的信息量
$$S(A)=-\sum_i P_A(x_i)logP_A(x_i)$$
二、交叉熵
1.定义
$$H(A,B)=-\sum_iP_A(x_i)log(P_B(x_i))$$
2.性质
- 不对称性
- cross主要是用于描述两个事件之间的相互关系,对自己求交叉熵等于熵。即$H(A,A)=S(A)$,注意只是非负而不一定等于0.
三、KL散度
1.定义
又名“相对熵”,衡量两个事件/分布之间的不同
KL散度由A自己的熵与B在A上的期望共同决定。当使用KL散度来衡量两个事件(连续或离散),上面的公式意义就是求 A与B之间的对数差 在 A上的期望值。
2.性质
- 如果$P_A=P_B$,即两个事件分布完全相同,那么KL散度等于0.
- KL散度是不对称的
- $D_{KL}(A||B)=-S(A)+H(A,B)$,如果$S(A)$是一个常量,那么$D_{KL}(A||B)=H(A,B)$,也就是说KL散度和交叉熵在特定条件下等级。
3.KL散度 VS 交叉熵
训练数据的分布A是给定的。那么根据我们在第四部分说的,因为A固定不变,那么求$D_{KL}(A||B)$ 等价于求$H(A,B)$ ,也就是A与B的交叉熵。得证,交叉熵可以用于计算“学习模型的分布”与“训练数据分布”之间的不同。当交叉熵最低时(等于训练数据分布的熵),我们学到了“最好的模型”。
参考文献:
KL散度=交叉熵-熵的更多相关文章
- 【深度学习】K-L 散度,JS散度,Wasserstein距离
度量两个分布之间的差异 (一)K-L 散度 K-L 散度在信息系统中称为相对熵,可以用来量化两种概率分布 P 和 Q 之间的差异,它是非对称性的度量.在概率学和统计学上,我们经常会使用一种更简单的.近 ...
- 从香农熵到手推KL散度
信息论与信息熵是 AI 或机器学习中非常重要的概念,我们经常需要使用它的关键思想来描述概率分布或者量化概率分布之间的相似性.在本文中,我们从最基本的自信息和信息熵到交叉熵讨论了信息论的基础,再由最大似 ...
- 【机器学习基础】熵、KL散度、交叉熵
熵(entropy).KL 散度(Kullback-Leibler (KL) divergence)和交叉熵(cross-entropy)在机器学习的很多地方会用到.比如在决策树模型使用信息增益来选择 ...
- 深度学习中交叉熵和KL散度和最大似然估计之间的关系
机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的. 熵和交叉熵 提到交叉熵就需要了解下信息论 ...
- 交叉熵cross entropy和相对熵(kl散度)
交叉熵可在神经网络(机器学习)中作为损失函数,p表示真实标记的分布,q则为训练后的模型的预测标记分布,交叉熵损失函数可以衡量真实分布p与当前训练得到的概率分布q有多么大的差异. 相对熵(relativ ...
- 熵、交叉熵、相对熵(KL 散度)意义及其关系
熵:H(p)=−∑xp(x)logp(x) 交叉熵:H(p,q)=−∑xp(x)logq(x) 相对熵:KL(p∥q)=−∑xp(x)logq(x)p(x) 相对熵(relative entropy) ...
- 损失函数--KL散度与交叉熵
损失函数 在逻辑回归建立过程中,我们需要一个关于模型参数的可导函数,并且它能够以某种方式衡量模型的效果.这种函数称为损失函数(loss function). 损失函数越小,则模型的预测效果越优.所以我 ...
- 信息论相关概念:熵 交叉熵 KL散度 JS散度
目录 机器学习基础--信息论相关概念总结以及理解 1. 信息量(熵) 2. KL散度 3. 交叉熵 4. JS散度 机器学习基础--信息论相关概念总结以及理解 摘要: 熵(entropy).KL 散度 ...
- 机器学习、深度学习中的信息熵、相对熵(KL散度)、交叉熵、条件熵
信息熵 信息量和信息熵的概念最早是出现在通信理论中的,其概念最早是由信息论鼻祖香农在其经典著作<A Mathematical Theory of Communication>中提出的.如今 ...
随机推荐
- MySQL实战45讲学习笔记:第十九讲
一.引子 一般情况下,如果我跟你说查询性能优化,你首先会想到一些复杂的语句,想到查询需要返回大量的数据.但有些情况下,“查一行”,也会执行得特别慢.今天,我就跟你聊聊这个有趣的话题,看看什么情况下,会 ...
- [LeetCode] 209. Minimum Size Subarray Sum 最短子数组之和
Given an array of n positive integers and a positive integer s, find the minimal length of a contigu ...
- UVA 10789 题解
Prime Frequency Given a string containing only alpha-numerals (0-9,A-Z and a-z) you have to count th ...
- ROS源更改
ROS源更改 配置你的电脑使其能够安装来自 packages.ros.org 的软件,使用国内或者新加坡的镜像源,这样能够大大提高安装下载速度 sudo sh -c '. /etc/lsb-relea ...
- 【转】.Net程序员学习Linux最简单的方法
有很多关于Linux的书籍.博客.大多数都会比较“粗暴“的将一大堆的命令塞给读者,从而使很多.NET程序员望而却步.未入其门就路过了. 所以我设想用一种更为平滑的学习方式, 就是在学习命令时,先用纯语 ...
- 提高性能,MySQL 读写分离环境搭建
这是松哥之前一个零散的笔记,整理出来分享给大伙! MySQL 读写分离在互联网项目中应该算是一个非常常见的需求了.受困于 Linux 和 MySQL 版本问题,很多人经常会搭建失败,今天松哥就给大伙举 ...
- 【BZOJ4944】[NOI2017]泳池(线性常系数齐次递推,动态规划)
[BZOJ4944][NOI2017]泳池(线性常系数齐次递推,动态规划) 首先恰好为\(k\)很不好算,变为至少或者至多计算然后考虑容斥. 如果是至少的话,我们依然很难处理最大面积这个东西.所以考虑 ...
- 【linux】Too many open files 解决问题第一步【记录】
记录一下解决linux上出现:Too many open files 的第一步骤. 做个记录,免得每次都查来查去的. 1.查看 ulimit -a 2.修改 vi /etc/security/lim ...
- 【转】Redis的各项功能解决了哪些问题?
作者:Blackheart 出处:http://linianhui.cnblogs.com 先看一下Redis是一个什么东西.官方简介解释到:Redis是一个基于BSD开源的项目,是一个把结构化的数据 ...
- 简单地判断判断两矩形相交/重叠 C#
最近需要用到矩形相交算法的简单应用,所以特地拿一个很简单的算法出来供新手参考,为什么说是给新手的参考呢因为这个算法效率并不是很高,但是这个算法只有简简单单的三行.程序使用了两种方法来判断是否重叠/相交 ...