Java调用SqlLoader将大文本导入数据库

业务场景:将一千万条数据,大约500M的文本文档的数据导入到数据库

  分析:通过Java的IO流解析txt文本文档,拼接动态sql实现insert入库,可以实现,缺点如下

第一:IO流解析大文本文件对机器性能要求较高,测试大约消耗2G左右的内存

第二:拼接sql语句insert一千万条数据大约需要2小时时间,长时间insert会锁表,如果是核心业务表,例如订单表,会造成大量用户无法下单,影响数据库的性能

第三:这种操作可扩展性不强,每次只能针对指定的表,指定的列操作

针对以上缺点,现在通过接口调用数据库系统命令实现,通过可视化界面,选择要导入的表,要导入那些字段,上传指定的txt文本,会自动生成对应的模板文件,实现大批量数据高效率的导入到数据库,通过可配置化即可实现,相对前一种思路扩展性较强,

具体接口如下

 package com.sun.sqlloader.api;
/**
* SqlLoader接口
* @ClassName: ISqlLoader
* @author sunt
* @date 2017年11月15日
* @version V1.0
*/
public interface ISqlLoader { /**
* 自动生成控制文件
* @Title: ctlFileWriter
* @author sunt
* @date 2017年11月15日
* @param fileRoute 数据文件地址路径(文件所在磁盘目录)
* @param fileName 数据文件名
* @param tableName 表名
* @param fieldName 要写入表的字段
* @param ctlfileName 控制文件名
* @return void
*/
void ctlFileWriter(String fileRoute,String fileName,String tableName,String fieldName,String ctlfileName); /**
* 执行系统dos命令
* @Title: Executive
* @author sunt
* @date 2017年11月15日
* @param user 数据库的用户名
* @param pwd 数据库的密码
* @param database 连接数据库的地址
* @param fileRoute 文件路径
* @param ctlfileName 控制文件名
* @param logfileName 日志文件名
* @return void
*/
void Executive(String user,String pwd,String database,String fileRoute,String ctlfileName,String logfileName);
}
 package com.sun.sqlloader.api.impl;

 import java.io.BufferedReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.nio.charset.Charset;
import java.util.Date; import org.apache.log4j.Logger;
import org.springframework.stereotype.Service; import com.sun.sqlloader.api.ISqlLoader;
/**
* SqlLoader接口实现
* @ClassName: SqlLoaderImpl
* @author sunt
* @date 2017年11月15日
* @version V1.0
*/
@Service
public class SqlLoaderImpl implements ISqlLoader{ private Logger logger = Logger.getLogger(SqlLoaderImpl.class); @Override
public void ctlFileWriter(String fileRoute, String fileName, String tableName, String fieldName,String ctlfileName) {
FileWriter fw = null;
String strctl = "OPTIONS (skip=0)" + // 0是从第一行开始 1是 从第二行
" LOAD DATA CHARACTERSET AL32UTF8 INFILE '"+fileRoute+""+fileName+"'" + //设置字符集编码SELECT * FROM NLS_DATABASE_PARAMETERS WHERE PARAMETER = 'NLS_CHARACTERSET';
" APPEND INTO TABLE "+tableName+"" + ////覆盖写入
" FIELDS TERMINATED BY '\\|'" + //数据中每行记录用","分隔 ,TERMINATED用于控制字段的分隔符,可以为多个字符。|需要转译
" OPTIONALLY ENCLOSED BY \"'\"" + //源文件有引号 '',这里去掉 ''''"
" TRAILING NULLCOLS "+fieldName+""; //表的字段没有对应的值时允许为空 源数据没有对应,写入null
try {
fw = new FileWriter(fileRoute + "" + ctlfileName);
fw.write(strctl);
} catch (IOException e) {
e.printStackTrace();
} finally {
try {
fw.flush();
fw.close();
} catch (IOException e) {
logger.error("生成控制器文件异常...");
e.printStackTrace();
}
}
} @Override
public void Executive(String user, String pwd, String database, String fileRoute, String ctlfileName,String logfileName) {
InputStream ins = null;
//要执行的DOS命令 --数据库 用户名 密码 user/password@database
String dos="sqlldr "+user+"/"+pwd+"@"+database+" control="+fileRoute+""+ctlfileName+" log="+fileRoute+""+logfileName;
logger.info("执行的dos命令:" + dos);
String[] cmd = new String[] { "cmd.exe", "/C", dos }; // 命令cmd /c dir:是执行完dir命令后关闭命令窗口cmd /k dir:是执行完dir命令后不关闭命令窗口。
try {
Process process = Runtime.getRuntime().exec(cmd);
ins = process.getInputStream(); // 获取执行cmd命令后的信息 BufferedReader reader = new BufferedReader(new InputStreamReader(ins,Charset.forName("GBK")));//解决dos下中文输出乱码
String line = null;
long startTime = new Date().getTime();
while ((line = reader.readLine()) != null) {
logger.info("调用dos执行的结果==========>" + line); // 输出
}
int exitValue = process.waitFor();
if (exitValue == 0) {
logger.info("返回值:" + exitValue + "\n数据导入成功");
logger.info("总共耗时:" + (new Date().getTime() - startTime) / 1000 + "秒");
} else {
logger.info("返回值:" + exitValue + "\n数据导入失败");
} process.getOutputStream().close(); // 关闭
} catch (Exception e) {
e.printStackTrace();
}
} }

生成测试数据的代码

 package com.sun.sqlloader;

 import java.io.BufferedWriter;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStreamWriter; /**
* 循环将数据按照指定的格式写入文本文件
* @ClassName: OperaFile
* @author sunt
* @date 2017年11月15日
* @version V1.0
*/
public class OperaFile { /**
* 写数据到文件
* @Title: writeFile
* @author sunt
* @date 2017年11月15日
* @return void
*/
public static void writeFile(String filePath) throws IOException {
File fout = new File(filePath);
FileOutputStream fos = new FileOutputStream(fout);
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(fos));
for (Long i = 0L; i < 10000000; i++) {
bw.write(i + "|测试数据"+i+"|");
bw.newLine();
}
bw.close();
}
}

前台展示效果

只需要输入:表名和字段名,上传大文本文件提交即可

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAjYAAAEPCAIAAADeSRmaAAAgAElEQVR4nO3d729TZ6Lgcf6dvrlvzqsoQshvqCiiGkK2SGlHGyquUIpGQOrVQOkGFe2MGEEhs9ZUmqY3yjIRM/zIVbwddEuj9dxs6S3xDUOcFNKU4CRcOe3uGkjiODlOwGdfnF/P+WWfmCR+cvz9vLnBPj4+9tyeb57nPHZ2aQAASGlXvQ8AAAB/JAoAICkSBQCQFIkCAEiKRAEAJEWiAACSIlEAAEmRKACApEgUAEBSJAoAICkSBQCQFIkCAEiKRAEAJEWiAACSIlEAAEmRKACApEgUAEBSJAoAICkSBQCQFIkCAEiKRAEAJEWiAACSIlEAAEmRKACApEgUAEBSJAoAICkSBQCQFIkCAEiKRAEAJEWiAACSIlEAAEmRKACApEgUAEBSJAoAICkSBQCQFIkCAEiKRAEAJEWiAACSIlEAAEmRKACApEgUAEBSJAoAICkSBQCQFIkC5FWYuHm25a14MlfvAwHqg0QBUipM3Dzb0qwoiqIoTYcT99V6HxBQByQKeF2ZRKtSi3iywk7V+4nDTfa2sXNDRAqNh0QBr2tLEqW5K7X/wl0ihUZDoiKvMPFl4qMjB/fuNk92zbF9bR0Xr34zXXit/Sbj5rmzNZExbhPO1dVOv9ttKw9tqxKlaVrmMyFS9hsNNAgSFWm54UvvNgeeIWNHe1/jCgeJ8tl3iIhs9EBy1zqsSDUdv57fhOMFdgwSFWFTve3CxQz/Sp2+Xes5j0T57HsLEuX835HZPjQWEhVdI5f2m7987z3xxTdTef3cVvg5ffXEXuucV/PkEYny2/eGxAcKhVDBuXvhTfMxDKTQUEhUZM30tpuntV/ddF12Uod/Y53z3Cfs3MjV80cO6FeumnYfOHL+5kTBPgfbW29SotTZ766eP3Iwps9HNu3e29Zx8eaE32UydTbV82Hbvpg5c9m0e+/BI+f9ttW31Dds2n3gg0RqVg0+tMLETfsAmmMHj5y/+t2ssxzWa21N3H907UP93WmOtX14PeN62RtLVDyuNMfaOi5+8b8fV3yPknFhOLz/0ki4txbY+UhUZOWvdVhntdjxqw/yIX5fV+/3Ho15zqRNh+MnDm5FotRH14TxnKj53UvDjo+rupZgi2LOT7b6btl0+HiHX5T9X7Dn+a3X+ubhw8Lm5ojGftl73vnVmfA+/bXxW8Sec0OV3iZHoRRlz8d3mOxDgyBR0TXV857ztPvWkfNXrfk+H+rQOb/TtcMmJip/+3Slp3N8XNWatGxq/+NEQdO0wvTNuPVoYbKyyk6dh1Zx46aOa1ak7NcqaH7rt8ZHlYREVWyN29C5PfrDOq5VmLzLXz/uTu57PVMbeBpg5yJRERaQHD1V3iXnwsyg0vzupa+nC5qm5h9cPS7uZPMSZV8qU5rePn3zQV7Vr5PZT9fU3mucia1zuTjJdb/7oOfJxCzHjiYqvwbhCGJHe77Nq5pWmP6f5942g2A/mZiopsPd37oyL7xzezr6fGcpPQrTX18wR3tvXrgbvKH7Nw3P+wBEGImKttyd8y0Bq86bdr9zVryQI0wM7oknhd/q1bsXrFP55iXKqo5juKJpmnq/29pJxTOx8GTmEYitcMyG+b0Gew2Cc1u7XFY6hET55kSIXQ0qDb3EXzP27N9vvmesmkCDIFHRV5j4MmEuHnBrevvcHaMPQjNO33buwW+88pqJEnZ5YsA19SjE8vBnD10PVPNzE9/89YuLHeIrMo/Afg2e076wKE4/NOFZXPNs9l7MpxcS5f+68rfP+l9Uq67p8GfBayod680vjYgpZPk5GgGJahyFn9NDf0p8ZK7WM5lf/uaXHINveV4vURWezf/OSqG1NtvIawizDO9g9/3qR2sd4M2LHW379u4Omarm2L6DRz7qSc0GhyafjNvDpvbeKed1KXseFIgsEtWInFdnjEGTzInKJU/bg5Sm3QeOfJS49c3Xn3om+jY7UearCJOocDawJ8elRGsuUhxIuaZIgeghURElTGP5nws9s2n2TJhnos+e+dqWiT7hilJ774zm+BDy4e4R8/KZz5NVeA2eiT7hWTxH4BYUllo/EOXh/d/IEShxwCQOrZQ9JwaIFKKMREWVcPaM+fxJPPHDu/oZWh04YZ34HMsHcgMn7HPiZiVK+KxP1eUSwl7FmPg82YaWfAQtl/Cx7YnKJePCGkTXZSfHF1sxkkKkkajIEk9kTW+fvip+A9KX/034dlnzQzbidQ57Eba9NFo8vWuvvaJPHCVUWXQu7FVY2CAuxrZudr4Gc9H5tz1Hqy4617fVCtNfX3g3duDIqYtfDKV/Ngds25so91+K8nyPolhx/t4hIo1ERVeFL2QQCH8qz3nm8xc6UdX34RwpeAgr3YSJxlh8YFZ1fnzJcQQbeg3il4j7HYE1vRbqCtLi335rHlPzu4kR/09HVd+T623x/6Jfx6jQf5wMRAGJirTKf4xDadp7esCxoEy9/5l3e/H7jzYzUZW/AMlxjvevWXOz9XV98aT1MtRH146H/RInLTd8ISDjwnL8sIsc1NkBe1WH4/G2KntyH0/w39p1RSrg6YAdjkRFnvEnDe2vXzWWOye+9P3aPvErWJtjbR/2BH0F6yYkSn++765e7Gjba35v7d62DxNfer+gQZ1NJT44aH4zrLGRfenJ9UnWwsTNs8Yum3bvdb8I5xyk83tsjS+ndX2RbPh1eIWRhBH52PFrj1Q1P/ez/VoKE30de4L3lLvjGBpWm8FzDxipFCKIRKE6if/GhoTU+73H3jmtz7y5vwHW5vpssXdAGWLyzjuVG/tw8D+27IUB249EoToSVTPx++YrDZBcM3zN734WbgmEYwr09f6MMiAhEoXqSFTtxC/n1esTa/uwZ9hngFQY6dYrFbpPmqbZQ6mNPQrYGUgUqiNRr6HwczabzWbnwvy9rlzy9Dsnrj3aaGlyydPHWHiOSCJRqI5EAagLEgUAkBSJAgBIikQBACRFogAAkiJRAABJkSgAgKRIFABAUiQKACApEgUAkBSJAgBIikQBACRFogAAkiJRAABJkSgAgKRIFABAUiQKACApEgUAkBSJQo1KpVI2mx0bGxsF6mR8fHxmZqZUKtX7vwZsFRKFWpRKpUwmMzc39+zZs0WgTp49e/b06dOxsTFVVev93wS2BIlCLbLZ7NOnT4vFYqlUWgPqpFQqFYvFp0+fZrPZev83gS1BolCLsbGxpaWl9fX1crlc72NB4yqXy+vr60tLS+Pj4/U+FmwJEoVajI6Olkol+oS6K5fLpVJpdHS03geCLUGiUIvR0dG1tbV6HwWgaZq2trZGoqKKRKEWJAryIFERRqJQCxIFeZCoCCNRqAWJgjxIVISRKNQiIFHz6cHUpM+N/d5bNW0+PTiYnnfeNpnq7/fd2NiP5wGV+D3B6+8V0iFREUaiUIvAUdRkqr8/NanNpwf7gxhB8JZLvyWoaMLeg++szvHw4MOkWjsIiYowEoVaVJjo84xdfJrjqklq0vmwCsOfSgGreiTeXfncXzGDkBGJijAShVpUvxYVOKYxqjCZEkLg2XgwlQrIS6WpwOrjKHOf8+nB/v7UpPMomPXboUhUhJGoRpFJtLYmMtU3UqpvpQUkyiyEKyC+A5/JVH9qUg+EKxPiJt5cTKb6BwdDdiRoFOUIkZm8+fQg03s7FImKMBIVUcm4EkI8KTwkk2gN2MxbreBRlNmeykMZZ5yEza1Y+fbFiEtQ9ELx5nAy1U+ddjISFWEkqlFUGUUFjJ+ScVfHDFUSZfzgPu1baXEsUxhMp1P6lmK4gtb7Be7cexz2jgM32UDIIC0SFWEkKrKqj6PMJGUSrYoST2rJuCNHPtUa7lLa+ma0sImqdu73H0UFJco5dqoYKUcLxcMJHLT5vwbsCCQqwkhUowgaRTlClIzrs3+ZRKvf9J7tNUdR9rb9/f39qVSIUdRkyjUZF7S0QR+h2feYT+JtTmCJSNTOQqIijERFU7hLUX6TeMm478UnlyqJmk+n0ukKoyh7HBNuFGUuwPM+l/NWo2PuvAUshSBREUGiIoxENYRkXGlNJOKVylMpat6QBSbKuMqklybEKMpIlDiKsra1l6dX/MaJfuvB5lb6Y43wOdaZO/bEtaiIIFERRqKiL5No1SNj/WD0KJ7UHGnyWxehua9Q6Sp9u4RxdhcT5Ro1uTeeTA0ag67B9Ly9liI16TO/5/uUzv3amayMUVREkKgII1HRpi8kt0dPRpB8YuRbosA7+BpZyINERRiJiq5kXFFaExn3OomApRAkCjsViYowEhVNwueZ9EQZwyfHOnPHcCrUtagQi86B7UaiIoxERZ0RI/8RkoBRFHYqEhVhJAq1IFGQB4mKMBKFWoyNjRWLxXofBaBpmlYsFsfHx+t9FNgSJAq1ePLkSS6XK5fL9T4QNLpyuZzL5bLZbL0PBFuCRKEWqqo+ePAgl8upqlrvY0HjUlV1fn7+wYMH/P9hVJEo1EhV1SdPnoyNjY0CdTI+Pp7NZulThJEoAICkSBQAQFIkCgAgKRIFAJAUiQIASIpEAQAkRaIAAJIiUQAASZEoAICkSBQAQFIkCjUqlUrZbJYvQEIdjY+Pz8zMlEqlev/XgK1ColCLUqmUyWTm5uaePXu2CNTJs2fPnj59OjY2xtf0RRWJQi2y2ezTp0+LxWKpVFoD6qRUKhWLxadPn/LHOKKKRKEWY2NjS0tL6+vr/Mko1FG5XF5fX19aWuJPGkYViUItRkdHS6USfULdlcvlUqk0yh+GjygShVqMjo6ura3V+ygATdO0tbU1EhVVJAq1IFGQB4mKMBKFWpAoyINERRiJQi1IFORBoiKMRKEWAYmaTw+mJn1u7Pfeqmnz6cHB9LzztslUf7/vxsZ+PA/wbhLMZ78h9un3AiZTVR8VYhPj5Q6m5/UfKh1ouCM19zOYng9+36OHREUYiUItAkdRk6n+/tRkxVYYJ1rvGVS/pdKZ1dh7IL/qifuuZZ/+hQpx7g/csfDmmPcLQfPbefDbqT/Kul949aEaGQ0kKsJIFGpRYaLPkwmfOjgHDf2pSefDgktTZWiw4VFUtX26d2gcqU8mKj+14xA8z+cYIXkSFTB+8hbQ9RYG9Sx6SFSEkSjUovq1KFeFPOdJx5nYs/FgKhVQqUpTgVVHUQExCt6nY4eTKZ9dmFtUyKrjEDTffAh7NO+1N01NurvlXy3hELxDqKqDxR2MREUYiWoQybjSmshU30hRWhMZ/QdLPOnZ0jdRZmhcZ0LfLkym+lOT+ok3aNrMd6ZqMtU/OBh4VabK5ZfgQgXt050o73bONAWG2R2YMLVwD67sKVTXofo0z55NbYDrUiQqwkhUw0jGfWOjaZlEqztGQtCS8dCJ0jTNbk8Fg+l5Z5yEza3zqO+oxDhpB59wq023+WSo4j69oyjNOwCsOHryGaG5nsrvmIOaXXGyzieh1cd2UUCiIoxERZTQnQriSWNTR4UyiVZ7yFVToowf3GdH/6muwXQ6pW8phitovV/gziupsHnlffpdi9Ic45tKSycCJtecOzVGRo7oeVZnBLK3nE+nBgf11YFGcfX/o/9CEOExFImKNBIVUZlEa5WJPatMPjUTomTeG09qmjbcpbT1zWhhE1X5nKoFjKKCEuU5kTvuD7dcwT0MqbzPgFGU4x7jxsrjRuez+68fsZMnXFDye9d83mtNm0+n0pOOa1GORSjRjhSJijASFWnOa0oBl5c8o6gQXnMUZW/b39/fn0qFGEVNpnzqEnYkFTCKqr7P4ER5Xm/YJ/W/MKQ/c9q3JIFPYd2hH6Z1sPbLsI8/ypEiURFGohpMMu5Z/+BKlN8UoadgVRI1n06l0xVGUfb4INwoylzY5n0u34UYnjQEzuFV22fVRFVYh1AlUfawz8qMe4xX4Xmdd0ymhCGT2Fnh+DeS9B2GREUYiWogAQsmnE2KJ13N8r0YFZgo48SrlybEKMpIlDiKsrYVfv+v+Lml6vXxHEvYfQZci6qwZ++r897snnC066TfWflTZIEH5HP5juUS2OFIVDQFzvC5tCYyfhN99oq+gMXqlb5dwjhriidv16jJvfFkatAYdJmjAGtbvzGR9ymrf42DuI8N7NN/FOUIl+8wrtIVJGepA1b8ibdVH0VZj3McbMWDiBISFWEkqmEEfjLK71qUvqgvEbROna+RhURIVISRqIZRJVH2dJ8eJf3fQasCSRTkQaIijEQ1DP8POFlTgkKM7Drpd9oPC7HoHNhuJCrCSFTk2ZelAlaWOyb6Alb8uW8jUZAHiYowEoVakCjIg0RFGIlCLcbGxorFYr2PAtA0TSsWi+Pj4/U+CmwJEoVaPHnyJJfLlcvleh8IGl25XM7lctlstt4Hgi1BolALVVUfPHiQy+VUVa33saBxqao6Pz//4MED/v8wqkgUaqSq6pMnT8bGxkaBOhkfH89ms/QpwkgUAEBSJAoAICkSBQCQFIkCAEiKRAEAJEWiAACSIlEAAEmRKACApEgUAEBSJAoAICkSBQCQFIkCAEiKRAEAJEWiAACSIlEN5fm/dL1zfoi/XABgZyBRjSWTOPzW777x3q7m57LpoT8lPjpy4P3PHwY8eOjc/nNDwr9netvbe2cc/26O7Quwd3eTvvH9P/wyaJt9+7pum/2c6j36/j9NeQ8if62jNZHZ+CsHsAORqGirWI19seY954Y0LX+to/mtI6c+SfxpKP1zQf93zMjK/ksj5r7uXmj9+I6qDf3mgBUde9/vf55xF8shf63jvR6f4gTIDZxo7x7qPyU8iV4vNRn/hX1ImqZpw11KW9+M/kPXsPGy+9oUgX6/y3CX+47hLve/FWuP/o+Y6WvTb3I9oaI4Hxm8T/fRCvcF7FN4mUDkkahIqxwGY1SkJuOHxXGJNU5Rk/H9F+6aN9+9sD+eVH02E6lD51pO386/7mHfPn20+76qaVrms2OnkzlN07T80B9+/y//4TwkTZvpazOjIfzoOo37ZUGb6Wvr6nI0yXXuH+5S2trahA30R7ibpUcrZDc8+3R3TzzUoH3SKDQQEhV5i8mPPFNuitJxzeyImow3796r33Xwd3/LJeNmZIbOvfnxHU3TtKHfHNgXa1aaY/v2/XrgzoX9b//jGcsHLXuOXzf3lb9+3NqXw68Hwmcrl4zH9PhN9R6N7d23d3fTmxeG9dHT0Ln9535vnaLFKgUXyu8GffNh4TGOHZj/cjxuuEtxRE1PltI17H5sEP99uh5o3R24z3BPBkQCiWos6uztcy1vHesZKVg3iVeYpvo62s4OPDLGSn/73UGrLlM97+lVcw2mrNv1f7S39wYO2qb6OjytdM1Cvv95Jneto0l588JdTb2fOHY6mdPy14//4tJdffR090KrcDXMcX53TvO5zuHeW/TNZ/rahEGLsMmwNz1m1MTt+7o2MIjy2WelxwXeJx40EHEkqoHkhi+9//6l1KxjRZ97DYQ/6zpTJnFYHEP96p099vWnsT8e8b/i1WSPswQ+M4Xq/cSx+Me/ar1wN5c83f5f+kfyWiZx+Pj1vH6Uzjw6ChUw4+e3qbiNfboXizBjhUi4Vf/RCtlwV9ew+ejhLvdFI+8wx2+fzoN2PjZ4nyQKDYRERdXiX7sOuEvhmoP74H9MaXcv7Ldu7fqnz961txHXSljXtByDJk3LX+sIXiFhyCQOC13JJc+e6JvSNHvhw/OvP2kzF8I/vJ28f+fc/nNf/PHE+TuPrh8//JsLx4/2ThmjJ71W5p6cJfK0ROQ9qdtDJt+xjc/0ofGTcd9MX1ffjFm+MDNvvvv0TvNZB19hn0z0oYGQqEaRSbSKcbFutfqh5vMFa0ilzg6c/eCz+0ZZ8tc6Dn7yl6tdf/hLb/v+9x1jqNZERrMX+flcg/pflw5/fMd4htmB0788dyen/8Na+KAOnYvZizqEkZJ6+/T+eDJn3uZ6BY4S2WMU/0m9oAs+mmd05B2+OEZZ+hPpW5vPVH2aL2Cffun0GdQ5MYhCIyFRDWKmt923UK1Hfpf8U+Kjo4cPvtf11xktk2j/+M7s8H8/87vbxnxgYfqbq6dbYu+cvfrN9KxzgaB3AbjXiFko9X7vsWMXhnPmHY5LYL3tMaNjI5d+YRQqN3zprBVJzfspLNfMXNA030xfm2eo4lkZ0dVnJs7n4eaMoDkB19bVpW/sMwDzFbRPY3rPsXjCONbgfVIoNBQS1RDU+92tnhm5u1fe3bun9b/e+mbiZ33xhFGj3c2xo4mvpwuapmmZz4798vzNB3lVy3z+vr6qLxaL7du3b18sFtu7u6k59p8+9fkksKEw0ddx+NKIpmnPBz/5oFfoTW7gxH5zcKVpmnrn/JE/pDVrrFeYuPrhB5fsnmmaNtXzXnvvjP+FHNc0X9BVoaAhivXpJr/zv7GtuNDOlRHvVSPHGorgfdpP7vlUVNA+meVDgyFR0TbT264oitL8liMQ9p1mtya+OH6wvePi1W+mC5pWmPgy8WHb3gPHr9kjpql/Pnf8+G9vPsjbe1FnU5f+83uffvvctdtMotU4qzbtPeZ6WvO+5rfOJnOax0xve8e1ma8/OXLaWlaoPfz83SZFaY61/XbIOQrc+OeDhvu29ey++U9HoNBoSBR2rI01SrhctR02/+mY4kMDIlEAAEmRKACApEgUAEBSJAoAICkSBQCQFImCRAZ2pnq/bUBkkShIZGBgYG6nIVHA1iFRkAiJAiAiUZAIiQIgIlGQCIkCICJRkAiJAiAiUZAIiQIgIlFRlUm0xpPCP5R4UtO0ZFxx/zF243795mTc80cgFEXxfYy+sf89wgb2QRi3OG9wIlEARCQquuwcWYWqmihxW89u/J8juDk+B0CiAGwAiYoyIwj2H3ByiSfd4yazI2ZIhIFS4F6ChlyOQhk/vXaihs68seuNM0PGv3pahH8IW7T0iHdatwg/bXuihN8CvPfsvPEusD1IVPSJJ7vqoyhrO6FZ7m39b/Xuwe5SYCE1bbjL/su4oUZRjkoJkepp2dXSUzFRPS273DyF2/5E7cjxLrA9SFQ0mVVwn2XCJMp6bDzu+3u5X6PcJ2B9yNWayOg/ioncnIk+T23eOHOmSqJ6WnbtajnjGIVthoBEhRh0Cu/YjhvvAtuDREVYMq7Ek5XPV8ZZyLmR89Rk3Cfe6Dl9uW7IJFqVeEI/2znjtTXXovTxU+VR1Jkzb7xxZmhuaGjIqNtmTfhtwihKeHdkHu8C249ERZijB9Y/XOc+86zkOR9Wqonz5Oc5mybj8aT/Ofl1E9XTssu+rGRGxmiRO1GVDW3WcOo1E7VDx7vA9iBRESaeZXwucggnMOu8FTTm8j37tSYyFa5xGPsM+sXcd69hRlFWW4wkWaMln0QNnXnDc/XJsknDKN9EhZ1rs2fpdth4F9geJCrCrLNMJtHqc+FB+D3d71f8quconzOi6+7NH0U59bTsaumx5vP8E+U/UtrEpX2hRlFBYyW/t2VHjHeB7UGiossY3yTj3t+s3aOYjPV7dOgRTzKuKEpra6vvSVPYp+eYXjtRQl70UZLxjyqJcszsbWei9Erob0fA6995411ge5CoiNLPRxVXGgs2MIoyT43CfeZNzl2ETdSGF52bE3zGz2ETpa+SMP65XYnKJFqNt0r8QFPwe71jxrvA9iBR0ZSMi5+eCWZfAfGcj9znKGPDCr9PO7fYqlGU8EmooTNv7GppMVdQVFwu0dOiL0t3zvsZ+/rXj/9h1z98/K9zc3MBP9aUKOfwVXw7HCHSdsx4t8psJbAFSBQkEiJR9sBIXDchlMedKH305FyG7tp08xPl/ToHTwfMAdZOGe+as40VPyAMbDISBYmESJQwVnLM97kvM1mL+by52tQvl3j9Rec7ZrzLKArbj0RBItUTpcfIdzLPXmG+2V/DVxFfIwtsHRIFifBN5wBEJAoSIVEARCQKEiFRAEQkChIhUQBEJAoSIVEARCQKEhnYmer9tgGRRaIiq1wul8vlV5LRj6re7w2AnYFERVO5XC6VSj/99NPMzMy0NGZnZ3/66adSqUSlAIRBoiLI6tPS0tLLly/rfTi2ly9fFgoFKgUgJBIVNfrkXj6fX1hYKEtpYWEhn8/rk371frcASI1ERU25XH758mUul1tbW6v3hSd/a2tr8/PzL1++JFEAKiNRUfPq1av19fW5ubl1iemH9+rVq3q/WwCkRqKiRh+myJ8ofZBX73cLgNRIVNRYiVqTGIkCEAaJiho9UbOzsyWJzc7OkigAVZGoqNETNTMzo0psZmaGRAGoikRFzcYTdatT6bylqqqqlgY6vX/u9VD3aMCjlM6BEokCsHVIVNToicpms6vhWIlaXV0tDXQqnf8sXjS6//tDeqI8j9J7Zjxwo7LZLIkCUBWJiho9UdPT08UQbp4Sh0tX/v2W7yjq31dWVtJXWrx3ebVcSYd53unpaRIFoCoSFTV6oh4/frxcTbFYXFlZKZUGOpXOgVJpdXVVvaX/aEzflUql0e5Dh66k9S3NG0e7D3UOWCsfRrsPHeoeNR+ysrJS9XmXl5cfP35MogBURaKiJnyi9Eqtrt7qVDq7uw8pp26pvqMoc2C0srKyunqrU1EOdQ+k06srKysrKyurq6uj3YcUpfPW6urKykqxWCRRADYLiYoaPVE//vhjIRx9ru/QlbSeHO/SBn1gVCgUlu9dblGUzu7uQ4eujBSL+sOLxRunlEPd3Z2K0nL53nLIJ/3xxx9JFICqSFTU6ImamppaCuHGSeXQlSudSuet1dWRy8FXm07eKHz3aYvSciW9urq6euuU0nL5nr6He5dblFO3VFXVb/2uUAjzvFNTUyQKQFUkKmr0RP3www+L1SwtLS0vL6+s3OxUOm8Ui8vLyyum1VunlFO3VleN2TxrVlCfxysWb5xSWj79rmB2a0W/d3l5eWlpqerzLi4u/vDDDyQKQFUkKmrCJ0qvVLF445Ry6sbycqFQuHe5peXySLFYXHEs9dxwuzsAAAK7SURBVGv59LvC0tJSoVDQC7S8vGyt8Dt1c0Uvky7Mk5IoACGRqKjREzU5OfkinKWl66eUU9eXlhYWvv20RVFOXl9cXCxcP6mcumktf1hcXBQfsrj4b9akYMvlEde9YUxOTpIoAFWRqKjRE/Xo0aPn4Swu/uWkcvL60tK/XWpRWi7fuNyiKCevXz+pnLxRKBT0Qc+LFy/0jV/cvdhilkn/EO49PVYn/hzy6XSPHj0iUQCqIlFRoyfq4cOHz0L48wkjON9dP6koJ28IK/ccTvz57sWDiqIoLZe+KxSsGT99qrBQKCxdP6lvePDi3TDP+/DhQxIFoCoSFTXhE/X8+fPFxcWCmRy9OgsLC/oyCusTTlaQrB8WFhZevHih7+TFixf6Q/T9LCwsPH/+nEQB2BQkKmr0RH3//ff5avRK6ReH9Pm3Z8+e6bfr4dHZs3wvXljbeHdl7afq8+bz+e+//55EAaiKREWNnqiJiYn/J7GJiQkSBaAqEhU1eqLGx8f/r8TGx8dJFICqSFTU6InKZDL/R2KZTIZEAaiKREWNtVwil8v9LKVcLsdyCQBhkKioefXq1fr6ejabffz48U9Smp6efvLkyfr6OokCUBmJippyufzy5ctisfjtt9+Ojo7Ozc3NS2Nubu7vf//7yMhIoVB4+fJluVyu97sFQGokKmrK5bI+kFpYWLh3795XX331pTS++uqre/fuPX/+XB9CkSgAlZGoCNIHUuvr6/rfz12Vhv6XfNfX1xlCAQiDREWTPpbSQ7UmDT1OjJ8AhESiIqtcLuuhkop+VPV+bwDsDCQKACApEgUAkBSJAgBIikQBACRFogAAkiJRAABJkSgAgKRIFABAUiQKACApEgUAkBSJAgBIikQBACRFogAAkiJRAABJkSgAgKRIFABAUiQKACApEgUAkBSJAgBI6v8DrqCwL6LoAD0AAAAASUVORK5CYII=" alt="" />

一千万条数据测试结果如下:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAnwAAAFGCAIAAAB/htVXAAAgAElEQVR4nO3df5Ac1YHY8RZFuCpf+SqVKoyPUpykKhUudjkJCCqecS4XnLvLOfb5nMKJQIgCruTmOAUFoxMQEU67+sGuzI9pkAJnCzg5NkHYlsAGNfYGG62xLEAIix8CluaXELYFFkgISUi7M9P5o2e6X3e/7unZnXn9Zt/3U1Nit6enp3d21N99r3uF5Rdw27p1U1P1zRkmp6ZWrl5dZDvZPKdq2e7MtjG4XNuqOl7Ze9GtZrPZbDYbjUa9Xp+ampqcnDx+/PixY8eOHDly+PDhQ4cOHTx48MCBA/v379+3b98rr7yyZ8+ej++6+pDMxMRE2V8NAHRhYmJCejQLfHzX1Tt27PjlL3+5Z88ez/PeeOONffv2/frXv3777betIlt3brttcmoq5za0ctXM9t+06HpONfxyXdsaxOYSXQDm6m90a86tN9dqN918y4033bz26zeOrv36DaOja24YWbXmhpWrVw+tXLVieOXM9t+06AZfccsgFtcnugAM1t/oAmlEF4CxiC5UI7oAjEV0oRrRBWCsXkZ3AijgpZdeeumll1588cUXXnjhhRde2LNnz3PPPffss8/u3r376aef3rVr186dO5944ont27ePj48/8sgjW7duJboAZocJogvFiC4AY030KbpDQ0NDQ0ObNm0aHh4W/xweHh4fHw9X8yYmah/5naWWpfi4jxIRXQDGmuhTdK+//vqHH3749ddfHxsbE/8cGhoaHh4eGxsLVtvhPrL69z/xN0TXJEQXgLEm+hTd5cuX+75/x+23Hzn64fp16w5/cHT9unXvHjw8NDTUaDSC7nqvvrH+vqe+dMFVzzy3p5zDP8pAdAEYa6JP0b322mt93683GuIKk1P1ILpBdxs/+73v1r48ess3Sjn0oyxEF4CxJvoU3WXLlvm+v/ftA8+/8SvxNjw8HJzu3bnlvOPuyduusF555eVyjv0oCdEFYKyJPkV36dKlwcJGs5m++b7fHD9l16o5P7/hX8oOy2PLz7Tmb+jqSC59SP52pvEs6AGiC8BYE32K7pVXXun7zd+8935ipBvcTjy/8MOHT350SdYwl+jOZuVG98YbbxwZGdm6dWvw5+joaP6fY2NjN91001tvvZW1wUcuvuTBm9d1uxsAzDTRp+guWbKk2Wy8c+idV/d/NX1rbjvlievmPFC7UHpQnt/+B/2tM5ePTUxMTGyYn1gQBLNl/gZhhWiN+MINy8+02oXdMN+y5s+XPQQqlBvdtWvX+r5/4MC7Tz/9dM6fu4I/dz194MC7TzzxxJo1a8bGxiTv+V88fuc51Vs/9enrTvv4NP76ATDNRJ+iu3jx4qZff+rlnc++dnvidnzXWYfuP/mnS6yrrroq47AsjkE3zI+ndv4G6Ri180i3taFoe4x0y6FDdB988EHpn67rhn/+6Ec/Cj8eGRm9++6/f+ihrY34tYHf/s7mZf/9mqv/458z2AVQxESfonv55Zc3/fqmbff+eO/nxNv2ty5sbjtlxzVz3nzs1iVLlmQcloUcCuNVYVwaLBWHqEWmlxOPIrrl0CG6furS+hyTU/XR0dFGo3HvvffdddfdR48eDZa/9sZb3/zW92/4eu2yy5a9/+573e4JAANN9Cm6tm03mvXh7wx969XPirfjj3/st5tO/snVv9tsNhYvXpxxWI5HN3P6N5hjDu4mugNDh+hKLzVI3F781dvhbe3atd/73vcajcaBA+9u2HDnwUOHfN+/79vOqhtu+No1Q/dteWjmfxUBmGCiT9FdtGhRvTl1wcj5y3afFd62TCx96p7ztl8zZ/Tvvtpo1i+77LKMw3JielmcIp6/YWJiYmz58g2JNYWHjC0/U1biIN/RnUS3JKVHV3pFff7txhtvXNs2MjKyZs2aBzYuvWfVv7jlunP/19KvvPfeb3vxlxHA7DfRp+heeuml9ebUOVec/Sdb/yC83eMu+vy5n9x5z1fOueLserO+aNGirONy6zqpKJ3RRVOBaNZ5/obkQxJdtSzrzOXL51uxZWGouZBKuXKjOzo62mw2n3v9reK3F97an7gdPXrs/hvP2H3HPxi/5SOPuyt68BcRgBkm+hTdiy++eKoxddr8U0/6Myt9O23+qfVm45JLLinnqI9S6RDdeqMxk9uB18d+4Vjv3XvST26cc/Tgq734mwjACBN9iu7ChQtPTJ1oNBuNZqOZ4aKLLirnqI9S6RDdxMj1ySeffPLJJ9Mj2qzb7s3/+bW75rz0jTkv/viyXvw1VGc5gP4o+Hdwon/RXdDJwoULyznqo1Q6RFcctg4NDc2dO3fu3LlDQ0OFhrl7H93uWIfunbPtpjlHDrzY7Q6Uq/ihAUBx5UcXyKJDdH9z8P1w2Dp37txgpDt37twiw9yd3/via3fNmfjmnBce/stun710RBfoB6ILfekQ3SPHj4QjVzG6HYe57+37+c9r1gffPWn8Zuvw2890++ylI7pAPxBd6EuH6L5x4NV9774e3MToBkuGhobCe8WP9737+pPf/8Ird87x7pxz39p/3e1T64DoAv1AdKGvsqM70mw2n//V7v1HfxzcxOiGS8R7w49ff2P9YzXrg/tOeqxm3TZ6ebdPrQOiC/RDOdEFigiuXW80GvV6fWpqanJy8vjx48eOHTty5Mjhw4cPHTp08ODBAwcO7N+/f9++fa+88sqePXt6Ht0drz326tHh4CZGN/gzvK4q/Pihhx569ejwEz/8V8Ew97kf/teR0VX9eHH6jegC/UB0oS8dovv/XnSl0Q2XiPcGH7z45l8/VrM+uG/Odsc6+NZ2ogsgRHShLx2ie//u+/Yc/m/BTYxusGRoaCi8N/x4x4P/7OU7rdfusn5yz6d93x9Zu7IPr03fxQ8NnlO1bLerDUgfkr+daTwLMGCILvSlQ3T/z5N3/vLQfwluYnTDhYnbU2/88c9usQ5vsn5xq3X/+CLf929YO9yH16bviC7QD0QX+tIhurc/Vht/5y+CmxjdcGHi9ugP/8nEBuv1u61HN512+2M13/dvGB306Lp2+P/LrDpefElrQRDMFtuVPCS5HdepWu3CurZl2bbsIcBsQ3Shr3KjOzI60mw2v/7IykR0s3I7/s5fbHv1j7fdYh3aZO241dr2TOXrj6z0Z0N0/fgY1LXjqbVd6Ri180i3taFoe4x0MfsRXehLh+hev3XZA29+oeDtBw/84xc3WK//veV++x898OYXrt+6zPf9NaNDfXht+i4zusJ4VRiXBkvFIWqR6eXEo4guZj+iC33pEN2vbfmru1/+0yK3b7/wh4/cNOfgJuvx26xNO/7N3S//6de2/JXv+6tmX3Qzp3+DOebgbqILSBBd6EuH6C6698Kbn/1ckdu9W/7tjjtOf/p/n7z5m/8wWLLo3gt93185MruiG5yBjaaIbdf3fc9x3MSawkM8pyorcZDv6E6iCwMQXehLh+iev/FL1z35h0VuD3//LyfG/ucvvnnO+q3zgiXnb/yS7/vDN8yC6Lavk4rSGV00FYhmnW03+ZBEVy3LqjqObcWWhaHmQirMakQX+io5uiMjzWbzi984969/Vilyu+6m//DoD/7Hhi3/KVzyxW+c68+W6ALoCaILfekQ3T9ad3ah6I5XPnvuJ6554N9f9dN/Fy78o3Vn+0QXgIDoQl86RHfeTWec98Ozit5+EPt03k1n+L4/RHQBtBFd6EuH6J6x5vRz/++np3c7Y83pvu+vWLOi9y9N/xFdoB+ILvSlQ3RP/9uP/tNb/vn0bqf/7Ud931+xekXvX5r+I7pAPxBd6EuH6P7eNdZMbr7vr1zN/2UIQAvRhb50iO4HJ44kbkdOHD06eezY5LFjkx9+eOLDD08cPz554sTkicnJycmplnq9Xq/Xm82m7/urV6/uw2vTd0QX6AeiC32VG921a9euXLVy1epVq1avXrV6dfDBmjVrVq9pGRkZGRkZGc21evVqogsgRHShr3KjaziiC/QD0YW+iG6JiC7QD0QX+iK6JSK6QD8QXeiL6JaI6AL9QHShL6JbIqIL9APRhb6IbomWA+iPgn8HiS5UI7oAjEV0oRrRBWAsogvViC4AYxFdqEZ0ARiL6EI1ogvAWEQXqhFdAMYiulCN6AIwFtGFakQXgLGILlQjugCMRXShGtEFYCyiC9WILgBjEV2oRnQBGIvoQjWiC8BYRBeqEV0AxiK6UI3oAjAW0YVqJUZ3IwD0VLcHQKIL1RjpAjAW0YVqRBeAsYguVCO6AIxFdKEa0QVgLKIL1YguAGMRXahGdAEYi+hCNaILwFhEF6oRXQDGIrpQjegCMBbRhWpEF4CxiC5UI7oAjEV0oRrRBWAsogvViC4AYxFdqEZ0ARiL6EI1ogvAWEQXqhFdAMYiulCN6AIwFtGFakQXgLGILlQjugCMRXShmjbR9WoVy3Yz7nTtSs0TP02u6tqW1VpFWNe12wt917YSKjWvtR2vVsl85kHmOdW8l7Tq5L6kgAGILlTTJrp+rJHJO+JBlRXCq1Ws1p3BykGHXc8TNhM8LHy4BtFN/zBg2a7v2pYlNtG1LcuyXfnKHTYfa6twR2t564NO0c0N+LT2ANAA0YVqJUa3VkklJD0Y9X3fq1USg9jcQiRGxbF79Ituct+Ez8NYeU7VKjQs9Zxqp5c02I7nVOPN7RDdaP3Yc2U/QrxX8mBAE0QXqpU+0pUUL57NaN5ZMtBrTRJ3arcrDbxt6xvd4Ku1XUlyOw5LPaeafknFTURJlL126UJKZxYKR5e5a+iL6EK10qObTl68ua2ZVXHAm3EQb53XbXUkvUK4gayRbjhDXQLZl+TallWtppJbaC44+ZJKJqtjY9C8TaaHqkKrq47rVMOX27WDn2WyBtaAXoguVCs/umJNpZ/ZdsV2Y22OFcJrj2Jbi1orimO49qRyOEsdD4yu0Y1PMndcWRCvXPoz267abqzNeZuU3hcby7ZO3EbnbxPjYIa60BTRhWoaRDd+1jaePbdW89Kzv9M4pys+JPq4XeayUhvJGOlWbXsaI10/ftY2cULYcbz0BHTOJuXj1HRWxZnpxL0MdaEpogvVtIiuH+ZPVr8gullnbiu23emCrPRGdTiLGyc9p1t1vOmc043Wkp+ibc8/Z72kyUd0Hul2ii4jXWiK6EI1zaIrOzZ3NdJ1batSkf7Gb971VuFl0rpML3vCedLiVy+nNpn5knYz0hXHytGuSKaXhf2MR3fav28E9BnRhWqlRzdx3VPwaSx9BaMbe2TwSfalQdKRrjbRDa90aos1uGN0pS9prNrdRVe4M9FVy7KqjhOdeI72M7y38+8jAeUhulCt9N/Tlf/CaXBfOADNK0T7QipJLsNTtp2noDU4rTtzrdLl/Q5vOEztJrozOyfLCV3oi+hCtdJHuhgI/ItUmJWILlQjugCMRXShGtEFYCyiC9WILgBjEV2oRnQBGIvoQjWiC8BYRBeqEV0AxiK6UI3oAjAW0YVqRBeAsYguVCO6AIxFdKEa0QVgLKIL1YguAGMRXahGdAEYi+hCNaILwFhEF6oRXQDGIrpQjegCMBbRhWpEF4CxiC5UI7qAApuhSlffF6IL1YguoMDmzZv3ov+ILnRHdAEFiK4aRBe6I7olGhoaGhoa2rJly5YtW4aHhzdv3hz+GfA8L1q7Xvfr9dpHfmepxd/3wUN01SC60B3RLdH111//8MMPBx+PjY2Jfw61PfPMM8EKux/dvvvR7at//xN/Q3QHENFVg+hCd0S3RETXHERXDaIL3ZUdXa9WqdS87Ptd28plu5JH5G4xWq9S83zXlm1DkeXLl/u+f8ftt99x++1Hjn64ft26wx8cXb9u3bsHDwfFbTQaQXePHDux/r6n1t/31JcuuGr/OwdK2t9pcW2r6hT4fvSV51Tl7xZliK4aRBe60ya6sroKx8ggkfLPkoplN9yGa5d1ML722mt93683GvVGQ1w+OVUPoxt0d2rbR79b+/J3a1+urb87d5NBXeKVKzd7GkTXc6o9/xbHt9mKupU9CUF01SC60F2J0Y1lVqykV6ukDpE50e00GLYs2+64SindXbZsme/7e98+sPftA8+/8SvxFlxIFaR355bzjrsnb7vC2naFVa9P5m7Sc6qWbcc71zl7/ahS8Wfvu97vgudUwy16TrXA20dpdDcuyH+zL9gof9S8FePqdrI/iC50p81IN76sm+jmbiv3mUucbfR9v3/RdT2nKmRGu+h6TjXr2XLu6ukuzHiD7b0s+tKVOdKV1lQM84KNWWvt3bt3fMU8odLCw1qPsrRKNdGF7vSOrlerdBqhCo/uLqPptb1apdjp4F5ZunRp+HGj2ZTefN9vjp+ya9Wc7SOf2j7yqU6bbDdAHH7FmiPOCwT3C0taq0VL2o8LNhstl02sxs8GiN+jXkU3/rNEfHnmhIWwK7YrfiGZX2zWQvH5hBemWM8VR3d8xbysvzHJRo6vmLdgo2R0HIR2fMW88AEbF1hWrL/zVozH1ygf0YXuNIhuoXgWGenK5plb66XqXal5qY0oj+6VV17p+83fvPf+b957PzHSDW8nnl/44cMnP7rEajSmGo2pTpuMBl5RdqPouraV6G+0bvslFxMdLg+yJqwSPtBurxstjF2cFn/KcLM9jK50H2KELyn+hci/WOnCxPayXi1dzunGSiiMYSWFHF8xb8HGRFvDsgofb1yQPS+dcUcJiC50p8E53SLTy4kBsTS66UFz+hIp8YHlzy8vWbKk2Wy8c+iddw698+r+r0pvzW2nPHHdnAdqFxbbpBiJdnbDMCSnWWNNjYbFcVXHS7Un9mlynOlmn1GWb7zTXQW/bHEf4hLRjdaQPmnHPRFHt4VnrvUe6a5YMS+8Q+yv8HHOPLJOY12iC91pMNItEt1EPmXRlYxy8qNb4mXLLYsXL2769ade3vnUyzuffe329O34rrMO3X/yT5dYV111VbFNSi6qja6rkkQ3+DweXUlFMqLrOdWwSdKBonyDPT2nK92HuLzopr/Yzh0V3zhFq1viSFf+cTzL81ZsDGaZ4+d24wPdzLJqNNQlutDdQETXq1Xix9J0dGVTw5JtJ2ep27OktUql5imfXu57dMMhYNb0siRWicnh5Fx17JPkvG16ellMorhTvZtelu9D3iqJc8+pL1a6MGN7GV9hmnYj3TC/rXO6rQWxUWti0jkzuhoNdYkudKd/dGUpTETXq1Uks9Sy39eNX1UTPNB2WzuhPLqXX355069v2nbvpm33/njv58Tb9rcu3P7Whc1tp+y4Zs6bj926ZMmSYptMj/USUUhfSBWu1F5NMlfb/k2k5AOjVau2HQ93e2rW6d1IN+ucrnQfBNnRzZiYzp+tTs+RCOtn7bvqq5eFRrar2vpYMoscPSYx/Zw4vZtVVka6QGElRrd9cVN0BA+vdgrTl9HB1O/pCsdL4ZKp2GYyDqFBH5S2NmTbdqNZH/7O0PB3hr716mfF2/HHP3b88Y/9dtPJP7n6d5vNxuLFi0vYv0g/f6doEBW+aDlUwq8MbVzQmjaWFjGMbhTTjQuSp3xjoR0XTvwGdwoz1e3BstW+ojnxgSpEF7ore6RrtEWLFtWbUxeMnH/ByPnLdp8V3rZMLH3qnvOeuue87dfMGf27rzaa9csuu6zUPSW6Sd2+IqX8nm40yZzObnhfGMdgrSDV4621kmPY1G/3xlYiukBHRLdERNccKqMbljEWT9GCjdEgNjmAbS9K/56unEYndPcSXeiP6Jbo0ksvrTenzrni7HOuOPtPtv5BeLvHXfT5cz/5+XM/ufOer5xzxdn1Zn3RokVl7yxmZHD/7eXxjPnpAP8iFdAdoluiiy++eKoxddr8U0+bf+pJf2ZJb6fNP7XebFxyySVl7yxmZHCjO1iILnRHdEu0cOHCD098OFWfCm51mWDNiy66qNxdxQwRXTWILnRHdEtEdM1BdNUgutAd0S3RwoULFxSzcOHCsncWM0J01SC60B3RBRQgumoQXeiO6AIKEF01iC50R3QBBYiuGkQXuiO6gAKboUpX3xeiC9WILgBjEV2oRnQBGIvoQjWiC8BYRBeqEV0AxiK6UI3oAjAW0YVqRBeAsYguVCO6AIxFdKEa0QVgLKIL1YguAGMRXahWYnQ3AkBPdXsAJLpQjZEuAGMRXahGdAEYi+hCNaILwFhEF6oRXQDGIrpQjegCMBbRhWpEF4CxiC5UI7oAjEV0oRrRBWAsogvViC4AYxFdqEZ0ARiL6EI1ogvAWEQXqhFdAMYiulCN6AIwFtGFakQXgLGILlQjugCMRXShGtEFYCyiC9WILgBjEV2oRnQBGIvoQjWiC8BYRBeqlR9d17ZsN/q4UvNid3u1ipUpuTIC4Wsqvrgz2FjV4XXGrER0oVrp0XXtWDm9WsVKLgiyEX4gFGU2RNdzqsKPEVHeZtK6vkTXtVM/9Mx420C5iC5UKzu6rl2peZLDeXhMn/UjXc+pyuPlOdXpVrevI93pbTPzywRKRHShWrnR9WqVro7E4Wh3Fsmu0fSrS3SBQoguVCs1uq7dnqJMHsjbJ3dzx7nt0XBqSnqgpGrkOdVW5ZJ3CTPR4mnw9Oy0NLrimsJWZRvN2Gx4V6Ke0crhivGtClvj9DB0QnShWonR9WqVSqU90vVqFaGb8Quq5Oduo2P/4Ec3lqQouvHAScaKrp3Ib2Z0hTtjj/Mcu700Wpi12XCBuBviQLi9i5JdZaQLHRFdqFZidF3bdmPlDMOZPqxnjnIHX36N0kNVIYCJid/o01R0k1PEsSdNjnUzN5veJck3R7joSnwY0YWOiC5UK/lCKuEAHlU3PdecP9IdbB1qlLqIOUhkO23Tj27V8Voba90T7ki30c2cMRZ2lehCS0QXqukT3bC6qcZ2GukO/vRyxjnd9qftbDlu4iHiPLDYzwLTy8EnQjI9pyqbXhY3Gz44OQ8hDMZtV76rRBc6IrpQTaPoBuInd1srzfZzunnRFS5ijn76kFwdVXWc7JFufFVLNrVcte1oR+SbDe+Lf8/yr++K1ZsLqaAXogvVdIhu5ki2YtudLl4e4NoWVnSQyD8dBXSJ6EK1sv9xDBRR7Pw10QW6RHShGtGdPYgu0CWiC9WILgBjEV2oRnQBGIvoQjWiC8BYRBeqEV0AxiK6UI3oAjAW0YVqRBeAsYguVCO6AIxFdKEa0QVgLKIL1YguAGMRXahGdAEYi+hCNaILwFhEF6oRXQDGIrpQjegCMBbRhWpEt1emPvMZbtw0vJX9N0NrRBeqEd1e4egGDfG2zEd0oRrR7RWObtAQb8t8RBeqEd1e4egGDfG2zEd0oRrR7RWObtAQb8t8RBeqEd1e4egGDfG2zEd0oRrR7RWObtAQb8t8RBeqEd1e4eg2yDynWnW8sveiD3hb5iO6UE2f6Hq1iu12Wsm1rUpNz2MjR7fB5tpWdnY9pxq+OQerz7wt8xFdqEZ0e2X6RzfXtlqEg7nnVNtLhZclXFX6UgWPSRfBtYXF0bNJ1xW3FTxJh91rLRT2V7KL0nuLL8zfToGXS/Z1xl4ICdtNP5tkpdxYl4/o5iO6UI3o9sp0j26uHR6zXdsSQtd6NaIPo+GWcLfIc6pWtZoch7XSIURX8oTpLbVWKrB76eZExZaR3lt8oeTerJfLCr8IydcpfGXSbSdinz3S1XroS3TzEV2oVmJ0O400orx6tUrr41Z0vVol52Bcjl4c3cKCuXb09cmyJh9eeU7Vsp1EqDynWnUcWxrdrKiJTy951tizS5KT8fC8e4svlN0re7liX1tmvaVvwq4Tmr+jpSK6+YguVNNnpJt94IofXYP8itn1ahUNxr89OLoJAzJxqCkbpEnD0EpL7N7gE1ca3awUZQzdwt1LRje+kfz5Vum9xRdm3Ct5ueKvW8FJYM+pxsbEuRPM0Xoaj3WJbj6iC9W0ia5Xq8inOqNhrh+bXhbmEWdFdOPHe/FoHw9c/HCf2oTtJqdYW0u6OKcr67y4e+LHrm2lMqVyZlnYu9jXlFijSHSTxU3cl5pTjm9e06Eu0c1HdKGaLtF1bct2XTvVzlhyE+d0M89IlmImRzfPqaYuU8o78era0l6GoWk/Xpyulk0vy19CWWCSzydcouTYiT1X3lzpy9VhpFvgIinxAR2iq+9Ql+jmI7pQTY/otluaupgqmeH4hVR6DHFbpn10S4evwCit0/VLrm2JZ3Kzops5sRs9facfbZIrK59azni58ufAO3wdKamqxi/DYqQ7qIguVNMgurGjeodLpKRXL+vR3mke3TLHeamhmzC2it0v31YwFBU+Kz7SLXLaV7Jq6rP8dbtemH2vfGIg+SNIhzdId9GNf16g6WUhuvmILlQrObrJM4JZy4T7Zll0U5fPiudKExfsyH8ZNZJ9wW7WOd2M1zkKkHz3Ur+lK3nK1JKZzC133I7s5RJ2s0ARi0U3eh5xZX0HukS3A6IL1Ur+laGsVnq1Suy4Fh3ryq9rhll1dOvVOcpe1aifVQvfW3nPkPeC6HtC159lb8s+ILpQTYPp5Vlilh3dejJjmvgnJkrfTj8U/GWkssyyt2XPEV2oRnR7haMbNMTbMh/RhWpEt1c4ukFDvC3zEV2oRnR7haMbNMTbMh/RhWpEt1c4ukFDvC3zEV2oRnR7haMbNMTbMh/RhWpEt1c4ukFDvC3zEV2oRnR7haMbNMTbMh/RhWpEt1c4ukFDvC3zEV2oRnR7haMbNMTbMh/RhWpEt1c4ukFDvC3zEV2oRnR7haMbNMTbMh/RhWpEt1emPvMZbtw0vJX9N0NrRBeqEV0AxiK6UI3oAjAW0YVqRBeAsYguVCO6AIxFdKEa0QVgLKIL1YguAGMRXahGdAEYi+hCNaILwFhEF6oRXQDGIrpQjegCvu851arjlb0XUI7oQjVtouvVKpWa7Kjn1SpWJtuVrS7dUPgE0g2mNwSzuLaVnV3PqYbvEPo8mxBdqDYQ0Y3u8GqVKI/tT1w7u0MleaYAAAjaSURBVMqxoGY9h2uXGt1o/4WDuedUJT8QhKtK9zd4TLoIri0sjr1auZlpPUmH3WstFPZXsovSezMfktp455crWtpxYXo7WW+b9A5KVsqNNXRHdKGaTtFNHtDCgWnH6Mpz7ft+GNT2uomnCR5YanRdOzxmu7YlhK61S9GH0XBLuFvkOVWrWk2Ow1rpEKIrecL0llorFdi9dHOiYstI741HPnvj0v3xnKoV7m/uQvmWpPuY+KEhe6TL0HeAEV2oplN0Zzy97NUq6QN3eFc7utHydq1LHulGwsiIeyTLmnx45TlVy3YSSfOcatVxbGl0s+KY8YK0Hxp7dkly8l9P6b3Rwk4bl+xP7MtofyJdKNtEWtcJ1eYNhG4RXag2ENHtMNL1/dbBM76B4HjanrEsEN3M08GqCD8qiENN2SBNGoZWWmL3Bp+40uhmpSgjdeHuJbsY30j+fKv03sToO2fjWfsTn4KvOp58YSeeU439tJY7wSy8ExnrDiqiC9VKjm72eTXxRKy8s+1PXDs15I20Q1pkernc6MaP9+LRPt6g9AA/ton2KxJNsbaWdHFOV9Z5cffEj5Ov/oxmljttXL4/iY0GX6t0YdZupZ9Zcl9qTjm+eYa6A4noQrXSo5t1pbEY3c6DjcyV2pvXe3rZc6qpy5TyTry6trSXYWjajxenq2XTy/KTnbLAJJ9PuETJsRN7PqPm5m08a3+mM9ItcJGU+IAO0WWoO6iILlTTP7qxg2f2sFf62PRSDaObDl+BUVqn65dc2xLP5GZFN3O2V3yR8n+hKrnyTKaW8zeeuT/SGeni09SZTyVIVTV+GVbpP7ZhmoguVNM+uvGG9iK6ek0vZw7+UiNdYWwVu1++rdgZ7e5GukVO+0pWTX2Wv26Bh0juk+9P8qcNL3Nh7lfSRXTjnxdoOvREdKFa6dHtMHHs2rEO9nakG+1FpeaVFN3UKyCezozPoWf87m4k+4LdrHO6GamIXUss2b2MX6RNt0dcUnBuWbrxcLWslyt6kPQyqAJFLBbd6PnFlRnoDiyiC9VKj27+SDd5NAvuCIer4UA1V2sUKx3RFT8oG6VX5yh7VaN+Vi18F+Q9Q94LwgndAUZ0oZo2vzIEvfRkxjTxT0yUvp1+KPjLSNAT0YVqRBeAsYguVCO6AIxFdKEa0QVgLKIL1YguAGMRXahGdAEYi+hCNaILwFhEF6oRXQDGIrpQjegCMBbRhWpEF4CxiC5UI7oAjEV0oRrRBWAsogvViC4AYxFdqEZ0ARiL6EI1ogvAWEQXqhFdAMYiulCN6AIwFtGFakQXgLGILlQjugCMRXShGtEFYCyiC9VKjO5GAOipbg+ARBeqMdIFYCyiC9WILgBjEV2oRnQBGIvoQjWiC8BYRBeqEV0AxiK6UI3oAjAW0YVqRBeAsYguVCO6AIxFdKEa0QVgLKIL1YguAGMRXahGdAEYi+hCNaILwFhEF6oRXQDGIrpQjegCMBbRhWpEF4CxiC5UI7oAjEV0oRrRBWAsogvViC4AYxFdqDaA0XXtSs1T8kwAZjeiC9V0iK5rW1ayo16tYrvBXYFKza1VrLhO8fVqlWiV8BMvtR3Lsmx3evuuMdfu3VflOdX0azbdly1rY7PxmwDNEV2oVn50XTsIaiuPrVS0ohuIxTMc6YYj3qjMieN2/HHpz4VdKPN4H+1/1fHSS8WFreXhonS/2l9IZtniL1Jsa9kLPaeaWsv3nGriZUs+MLYT4brpx2Uv7aTg/ufeG+2l9EHhN0LcvazvDgYM0YVqZUc3LGc7iOnourZVqXmxtAoqNU+sr21LVqvUvPb2EsPcdr5LjK5rh8dt124f2T2n2j6cxxdalm3bGUd6z6la0YsmrJOVzPTWsp6iY3TlD3Slu9qb6Ha1/zn3Rq+vbHejvRLWk353MJCILlQrNbrx2Hm1imW7yeimgygZ6cZHyeIW2yNbIbrRKtGWNDlwto/6Yj7jn/hZJYt9FYkvSJrMvK2lFhadXnZT0S2c1+mNdAvuf/a9sU/yXqhozdzvDgYL0YVqJUbXtSu2HR93Viq2HY9uOL7NOaebmF6OLrTqMrperdLxNHFfhcOmeKzSJZOUQVjqOVXbzZlejj26cHSLTC8nHijug/jTVS/P6Xbef2FcKrk3tartSh4SWzH3u4PBQnShWrnTy2ICo0unUud041csp65eTo102wvk0c2cXi43up5TFeeRu4tueryVmPud+Uh3GtGN7594IlrlSDc/usLLHvz0loxu+0eErLEt0R1oRBeq6RPdVvni0RX/Izmpm76iqlWt8GGDMb3sOdXYALTbka5kjrPn0S00Ns0uUHIknlqhpOllP3ZRlGPnvVCthzHSnUWILlTTILrh4FOcWRUiWam5sWFv55GusPkBiK7kWhzpnKf0TsmSvOuW0xPMxaIlfYW6GOlqHd3YPTn70H5c7ncHg4XoQjUNoit+FuY0uqc95ye/ejn+y7zZvzKk7fSy/KAtLJUFsMMCydZmNtItfEFUIv+ecOZ02tPL0yhoF9PL0keFDxF2SthM3ncHg4XoQjWdoisOYRPRFf8hjN6NdBMbKCW6qZ8lhF9LKTaF23msNcPoFrhcWr6qMObO/O3dvMnqjjtfaP87RFf2W7qJwKZ3L/u7g8FCdKFayb+nG09OpeZFQ9H2b+3m/DNSWQe9aGXJyFn67LP70NmhWx24yfOcMy1OdyPd1NMDvUN0oVrZ/zgGAJSG6EI1ogvAWEQXqhFdAMYiulCN6AIwFtGFakQXgLGILlQjugCMRXShGtEFYCyiC9WILgBjEV2oRnQBGIvoQjWiC8BYRBeqEV0AxiK6UI3oAjAW0YVqRBeAsYguVCO6AIxFdKEa0QVgLKIL1YguAGMRXahGdAEYi+hCNaILwFhEF6oRXQDGIrpQjegCMBbRhWpEF4CxiC5UI7oAjEV0oRrRBWAsogvVyo6uV6tUal7rE9e2bLfTI1w7ekA3Gw8/8WoVK6Xz8w6cQq9mQZ5TTb9m033ZsjY2G78J0Ny0o/v/AV5k2D6Y7FOLAAAAAElFTkSuQmCC" alt="" />

执行结果:大约5分多钟

数据库结果:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAbIAAADwCAIAAADq9naYAAAfQElEQVR4nO2dv4rjzJqH6yJOsPdhxrB9B5tu2h04crqXcBS1w+Og4aTDdNJgOjrgoOHwDTM0OGgcDnyYmcQ0HJhENCwLy4I3KKlUf976I6lUksq/h2Jwl8vlkkrvM29JajUry/LPP/+8kJz+9u+sZr3ndfu1UiE3Yezf/3aie+rGn3/+WRoc7z8x9mm1+sQYY5/uj8f7+93x/n7XtNitVru67er+WFd+ql92gBxJWe5WfLur79vd3x+lb5fa3d8fy/J4PKrDI7ZsteOj3t1/osdrGQkAIBqsdGjRwX4dXYImugIqC326P5ZchLv7Flq0yCgIp4x2K27Gaky0Fnf3n2p5Ug1WjLFPn+omR9G43UgAABHoqsUkWLLFlaJFXidp8Xj/iVHE12L1Tbzj3Yq/4NarMsOmXZP7GVoUEtytVru6beVaVfjWkQAA4jFnLe5WskA8Gzpgtsj1WHdfL6yta3bnIlr9GLHyhxYBGJr5aXEUMBIArgdoMQiMBIDrAVoMAiMB4HqYuhYBACAxk9YiAACkB1oEAAAFaBEAABR0Le6e/4GCgoJyzYXQ4hh2BgCAqUBrkV+lvlz+ern8lbECBQUlehnp5hPgB1pEQRmnjBr4wAW0iIIyThk18IELaBEFZZwyauADF34tbsVDFfc/9qdvjBU329/6KcrTN8YKtv4hVf1Y19Nvbc8Kxor6+baXy+nbzfb3fk21v/ze3viPM/7xkCNyaz4pcv+sjl8ZpDZOxgrGnvfawPjH1U9NpxjjL6zbe/NN3T3VVIbNu38PGP1U+7Cur36s5mj/HLRRF6mxZfzW0nZ7tUOojgvyeHZ876iBD1x4tPj6X385bf/ezHc9/Tfb36Ke3Xw7KYcFoTBb+/W+Oe75Uci1yBuv9xeuue3Jp8X181po8ebbXnyXvWxPUrTcfDvtn7VxrvcXZdvlcfLx83Cq69f736eTLwK17+1RWvVDj9++vWz9o/HR+odsCnIerf1YivIf2PqHbGp6DL7e9G+0jN9+/PTa3ov9eHZ86aiBD1y00CJ1ID7vjdTAqUW1fS0jRzAHZn9qwhKUWnKtaBGlh4HIPozMkfv3tH+u9CS/thU9K5G2Tn5L/a4mKzn9Psk6JvuxfS85ftv2Ml1Joplt3q39WIquRan99sTH9rz3uoz8duf4XcdP5+0NPZ715cWogQ9ctFlES0dGs74I1iLRXk4NqNJCi3US5M8rDd3YtFjHJx11p+3fqzBY/zht/86HGpLBkW3kYTuyOXUR18saatgr22tqQvxom3drP47JatA25Hl/+XEK6MS9geT4raXl9jLlvysq1SUKtDgbWlxyocK1X7YYVYtN1hZ2ds+WLTZJW13v0SI/3E/fWJiqiDZG9ieZ4nlPVFr6aWMNoUVze92asGVPdD/2ISkK1hL84OWzYwNjadF2nCvbXp9jDdl2UUYNfOCi1ZXoZl3jWJXIWhRHv3XR4VRYKy22LaRWmnHKJ6Sci2jGqjObtj4DvtcVdUqsdsoWgxbR2gk4z6IybL/Zi3ZxTL9WFluLvRfR7gHUcRH8XzIvowY+cOHW4n/+B/tL89+4dOpEO1zkEA3Romivnp5/3qunycbUIs8CmssplksuavSGabHeP5JBbJcplHMC+jk4oh9bCbnkIm+v+l3W/w7F9lr7sRTVg8/7YbPFgNOU7bZXHbB0GJjHs/IV6mJ81MAHLrxaZNLKTruRwlj0aTdqXC6X+soy3b461JTGTWhZFo9RivSlxh020rG7PakXGeV3m5Xv7+2N/GNABFIt1XuGfqztle5+bMV1g462vZZLOv55p/YbaTGtF+VyjfG9QRtVfYC8QSfgklSr7VXObFy0MwDk8VwPVZmpUQMfuMDt3CgoCYqREUOLEwZaREEZp4wa+MAFtIiCMk4ZNfCBC2gRBWWcMmrgAxfQIgrKOGXUwAcuXFoEAIArBFoEAAAFaBEAABSgRQAAUPBrcfNQsKJgRcGenlYPL2VZHl8eqhpRHl7KsizfnqTKp13dg7V9WZZluXtqKo8vD6s3qn3xsPnl2RKzH7Neq1m+/Gq+6+GF1y9ffiljfnghx2MOYLN82Byl8awujF2Wmw+l0fFluXwpg2l2vihPb+p+VnYmtb1vK20H8o8/tBgGAFeFR4vHlweuiZLHWx1Lcn3562WpaI5QmK397qlgT2+iDSsKrkXeePdUcLttHjxaJPsh6pvvlTt8W0n1y4da6PU4yfGYI2DCxGV53PwfW/13uftfXYtluVsVq10Zzuah+Q+m/PWyfHorjXlR5sjc3l8vy6KpV7bR8b1Lf5ug8UfqB4BktNCiTF3fCEXg1KLavg5yG0JDHmz9qL6WO3RocfPyVBnE/nGTzZKSHaXF9gnj086YCP2/GfeAf70sn94qvcqvbRxfluqtJKsd9Za6FZulqH+oNtDRDwATps0iWgo5eY2p9WjTItH+7Yl0rtRVmBYt/RBOr1u6tPirfreFFt9WjBINqcXybcWU5bYbsf9tWtw8VKOybi/35tvT8uUX3wSPFnm3VJYnnyg4bh6EGY+bh2W9Q3crxZjIFsHsaHHJRV6ExskWp6rFSojhWjy+LFto0ZJaWrBli+Lcoqj3aJGfZHx4KcuuWjSyP9Zs9duKqLT0A8C0aXUl+m1VX0ixLa5L1Tji0gfd3vCO0VXwIprsJ3ARrZzrrOqPLw+rlwlp0fjCen++PTVXt5yL6LIsy7e3nb1PY5Bmm7dVyPJ/94RsEcwatxbfVoWqD+l0vqw5OcxCtCjay5cLeDojeydUi/Z+bJdcji8PSr10OaIefJNbBYxn0EW0U4v6+C2XXNRzr2FarAe5exIJ4G5VLKmLX8pVePXqE9kPAFPGq0XiLhnqhpWnXVnqN44UhbiyTLcvy1K9B0VEk/qRoFgi+ympG3Rs9fKNOyXfHFmjzvFoCSC/O6cpy/9p3mtzyUXaKOMOG2nkmwdiK5TL0KKH5kffXt09WRbFxCKarHT3A8Bkwe3ckVBTJFfDljfoAAASAy1GQ7udm6bl3TkAgPRAiwAAoAAtAgCAArQIAAAK0CIAAChAiwAAoAAtAgCAArQIAAAK0CIAAChAiwAAoAAtAgCAArQIAAAK0CIAAChAiwAAoAAtAgCAArQIAAAK0CIAAChAiwAAoAAtAgCAArQIAAAK0CIAAChAiwAAoAAtAgCAArQIAAAK0CIAAChAiwAAoAAtAgCAArQIAAAK0CIAAChAiwAAoAAtAgCAArQIAAAK0CIAAChAiwAAoEBrEQAArhZCiygoKCjXXHQtfgYAgOtG1+K4S3oAABgdZIsAAKCAbBEAABR0LQIAwJWDbBEAABSgRQAAUIAWAQBAAVoEAAAFaBEAABSgRQAAUIAWAQBAAVoEAACFSWvx8+fPUxvSTMGejMg178wE2z70V4T0Dy1eBdiTEbnmnQktjs81H39xwZ6MyDXvTGhxfK75+IsL9mRbDofDR8VBe+uadya0aPlAG+qP/DHcBoAQsCdbITsRWpSBFi0fYOyi4qgsy5KxP3gZaAOA4GAEsAB7MhzNiYfDT63BNe/M/tvOWCGXIb7CzYBalGuKorBV1h9JkS2Sier1cPg4HH4eDj9pM3r3ZKv030vc3sxuHTU9ORwO//rXv2Qn/vzZV4s5HZBRtChs00GLgYeWY4e7++fiykSLjLGvKtkciCEIJ5qpDce7J6ujgTF2oQpjjLGiIA7iBL0J+GGmaVGr6cPhcDh8HGozVk7so8VqH1z4simHA7KnFvnM98kWGWP//Oe/McZ+HI9kYcyzt739l3lki0VRFEXBVcj5+vUrr+z2vfOicWIPLZYOl3WyWNzeOGYi4E0NwuFO/PiozCiceDh0ObdYC/FyuTT/ZmDGPloM3Pz+WuyTLeajRe5BLVr6J4yHmj6dDE2IE8s2/8HoLuthsbi9MRWypjOKE6udeSCdWIat8mQb9jHjIYzWG1xj5sJuWp7XKszEMEG2yBt024TuWizrBE3gqOzDBLT4MWUtBjqxbHM0Ky7rYbHovbF6vSxrUatx8PHxYX3rcPjgKaJ0LuJgcWLp3JnMyBClAXYxOFdzfa6T+JfrO7xDs/NWH2+rRfk0Yr31fc8tDqrF6lvKIW/Q+UMq3p67bUB5rVoMd2I5/0su/TuUtai85mnix0dlRp8Ty4C4NTPEi0TbbXeYsb8T23bS8rxqMbtssfqWcuAbdBz9eA/r8JM4UWKPo65OPnouVaIsfMw7b1o5sZz5JZeqJynvEueRzWTM1gm/40a8qF5LTmxyRqcTy4BsUTOjqcW2q2nSjFGc2Lar8Eyl28C8X5FAi9VhNNa5Re8BHbIBX320naHahmbprMVevVUGlMzY1onlzC+5RNSiTFmWlQ0/Kid+HD5+HjxOLMOyRWFGbZzagMN3QmeRebtq1aFt28MTwyjZIhcfiXi37SaI/llRjHzJxX18hGhRO5spoq7zKc6pZYuNAT8OZScnljO/5GIzIFlp68TUomTDxok/A+YlMFsU42HGWkqkja32Q7dlr62Tbktyhxal7RKRWFwu/OoTi3tu0VvmrcWyxx1GpZEtitiIcgOj0GK3j8ficPgpm7F5PYAWy0lecjFtKHRD1pOQVvz582dbJ5btskU6SRQ1bXdFh4sk5sdJJwaacfrZIut9Jbo6jOZ7gw6TEkMhQf6i/wXxiWix1MzY3ollywuIWt7dacgxe9O00updAZ0tfnzwWxN5CRzPWNkip7MTyxi3+0zk3CKpxVg36HTMFss2N+gM+jvRTE0M+ZcKRcbIFjuunaOjm7GNE8v2d+GKPdlymIP0NqgWxXnGcEbMFken/5Xonl+RQousU7YYTv2RAW/nZnXCqGmxZ6o4QRoztnRi2emXE3o6MfDY6NBVq3cFwn2aCts6sQz733q4bHFc+ty3GOUr2DSzRZJutyV6Cc/YGfU70XM87NzwXLHDB9M/9KXwkXIwpf2+xQ4E/m8tZ4v9/2+YCP1/y6X/V3j/x3Xv20Fu0Cmp7M/UYucMUQZP0InFNT8LKzqt/rdOMJ6U4HmLlg8ov7pSnTT8Qz2N2Od8YtsNACFgT0bkmncmtGj/zCSzReAAezIi17wzocXxuebjLy7YkxG55p0JLY7PNR9/ccGejMg170xocXyu+fiLC/ZkRK55Z0KLAABwjbi0uHv+BwoKCsq1FY8WLwAAcGVE02JRFP5GA/eQjLIswxvPaLvmSNu5OAPgI0iLIatxHvztV/Exe0hJ4FA/f/48r+2aI63mYuyIAzMAWuwItDgdoEUQl8lqcbdiy82Rv1Dh1WPTVYu7FWNstVNbiY2tOG6WRiu+H7RP8oaWHUW0zxNoEcRlFlo0lTG+GntpkVCevEXHzXK5Wi3VRtQHuRUtO+p6gBZBXOanxZLbYOw0qIcWl5vNSvWbuo3HzXK5OeobuVsx3ZXHzZKtVo4ddSVAiyAus9TiFLzYS4vHcqeIUdnG+ofjZilv+W7FlpudvOFcn84ddR1AiyAu89TiBBTQU4ulIkZ5c6TXhC2l/xC4FR0nYSdzHnZooEUQF2ixI721KIvRrULltfBiZUXPjroKoEUQl3lqcf6LaPEDUzI+KuWrNlReW692worQIrQIYjNLLU7AinG0WItxY91YIqM8bpZstamtCC1CiyA289Pi/G/QUQcv3WSjXWSp2zN1sazcrAgtltAiiM0stDjFywjRtNiIXhjQfHe1kz+o6NN5yeU67ueGFkFcJqvFqfM5mHlt1xxpNRdjRxyYAdDi4OS6XXMEWgQhQIuDk+t2zRFoEYQALQ5Orts1R6BFEIJfiwUAGTF2xIEZMKGnczPGxt4bg/D169e2H5F3hW238HryXbPS3cn10GEuwBUSeRHdayiZhqgZimJLtZtpzAbkj2Yn4S8CR6KNJxugRRACtNgd7z7hzchQNHO9zlq0dRuecpIN5jUdfeYCAI3WWmSM9dTi92LBbr8QQ9Hi8MttnbVIrcetVOkfiqbF3EtjG44G5ltkjUeLVzAXAAi6aJFRZgzRovvwVuLwe7Fgi+K7+nLcSoNuociMJC5Qi67dpdbL+juHpYQOpWY8FwCQdNSiaca42aLa5sstWxTfR6406RyKmqccWjQdR+4urdLsxPYR8i2tWd5zAYBJdy1qZhxSi9VP41aa9A/FwGyRtGSI47TGMbSY7VwAIOilRdmMkc8tyuul78WCicxhvEoDsUNsL3gz7yWXcC2enamfo96hRfGWdR2d+1wAoNFXi+KwG/CSy+L2VkTGuJUqfTKUIbRIS834Oq2x4ysasp4LADSmmi36PzFu5fkc49yi+WO4Fs1mWqW3W3djC7nNBQAmEz23aHzASBHGrTyfz5G06PWg1iYkB3R0YhuJ6IpMNhuymwsATCZ6Jfr85VbcxdO8HLeyK44bdM5h+ZomO/GjIwd0JIZmpWcM+c4FACRJ71vkBGaL34tFfUapyQ/GreyG975F9+uzkcppb9lqvDmpWW8bQ65zAQDJCL/lYh2K65TWjLGFoi19I3M9B0xNJM23SNkxCfPb245hLkCLIAT8TvTgIBSnA+YChAAtDg5CcTpgLkAI0OLgIBSnA+YChDChp3Mzxr4CMDBjRxyYAdN6Ovf75T2/8vXr17YfkXeFbbfwevJds9LdyfUUaBGEMK1F9OhhM1AoajViS7Urv2YD8kezk/AXgSPRxpNNgRZBCNBi9+LdJyIUzc+auV5nLdq6DU85yQbzmo7wuYgVOSBj0mqxuTGXuKFbj8P9Xd327jF95Um6h/gUX4s2i7mXxjYcDcy3yBqPFjOai4ECCeRESi1Kv7tF/XKrEoenYlHHwOt2wW6K15SVl8c7xu72IlClEO2tRWYkcYFadGmLsqfZ0uE+h1Izm4uhIglkRDotqiYkfgNQDtrX7YKtH+sfH+/Yojilq5Tjs6mMpEXTUw4tmo5za9HWSYgWbT1nNhdDRRLIiLHOLRK/9W/X4mtxw+726SrfL++Pa7bYvhojiaNFh8XIbJG0ZIjjtMYxtDj7uYgdQSBDxtHi92Jhnl20LaL5qaXF9jVd5aWKRsaYLQ5FKDL7E6EdWnQL0aZFm8hsjcmv0+rFW9Z1dF5zET2EQH6MocUvt+SzUPSgFWffb+7ubuoISVTZpCrRzy0Op0VaahYtam0c2WJmcxE7gkCGpNai/a9xOG7QkQIjTeX+Tk5MxCIulha91gvRIu0v57qYNGlgt9nMRfQQAvmRVIsOJ54dWlROuqeolC6DDq5Frwff7YmkLQd0dOLWoi3ZzGkuoocQyI+EWrSsnZuh6DfKVculx3V9UilZpX6Sy3q7XEhx3KBjisnWRm4mfnTkgI7E0Kz0jCGvuYgdQSBD0mlR/Pk2geZILW5ft/U9vFKykKxSuq/YXN9F02Lg6lhL5dwG1KRJ6q+dFvOai2HjCWQBfvlv8GK7QceWvpmmcxemJpLmW6TspP+eiOswbccwlwItghCgxRShOPoYUHiBFkEI0GKKUBx9DCi8QIsgBGgxRSiOPgYUXqBFEAKezg2ui7EjDsyAaT2de+y9MQgdQpHZ/2a0Vk++a1a6O7keoEUQwrQW0bG2alKYocioP9bsUKHbfa1eBI5EG082QIsgBGixO959wpuRoWjmep21aOs2POUkG8xrOvrMBQAa6X/5j0M/KkL5ubn/W3rWTppK763n5/M5RiiaFnMvjW04GphvkTUeLV7BXAAgSPzLf9KxbhzcShxKD61tXiarNEceLxSZkcQFalHD1kbT3zksJXQoNeO5AIBkpEU08XBuJWjV96tQSFapYYnE7qGoecqhRdNx5O7SKs1ObB8h39Ka5T0XAJiM9xhaZ7aoRkj1U7JKY6zm3+M6nxMuoklLhjhOaxxDi9nOBQCC5Fqszi/6zi3K4hTPI0tWKWFLT851KDL7E6F5M+8ll3Atnp2pn6PeoUXxlnUdnftcAKAx4iKa+Mt/ys/iXPvi9la0TlZpH6fAu094s2RapKVmfJ3W2PEVDVnPBQAao92gY/7PT0RjBbl2SlFJ/CEuic6h6LVeiBbNZlqlt1t3Ywu5zQUAJmNpkfiv3xqNZJqQotKxaDufI2nR60GtTUgO6OjENhLRFZlsNmQ3FwCYpP070crNaM5FtJQbNC+TVYoBuyIxFMcNOuewfE2TnfjRkQM6EkOz0jOGfOcCAJLp3s7dNJbaJqv0Ldpa4L1v0f36bKRy2lu2mvBFtFfNuc4FACT45b/BsYWiLX0jcz0HWiJpvkXKjkmY3952DHMBWgQhQIuDg1CcDpgLEAK0ODgIxemAuQAhQIuDg1CcDpgLEAKezg2ui7EjDsyAaT2de/S/9THQ3w9p+xFm/5vRWj35rlnp7uR6CrQIQpjWInr0sBkoFLUaRv2xZocK3e5r9SJwJNp4sinQIggBWuxevPtEhKL5WTPX66xFW7fhKSfZYF7TET4XsSIHZMwoWqR/kUuPw/1dnbXcPaavvLwWN1XtYvvaMxRtwWxazL00tuFoYL5F1ni0mNFcRA4gkCMjaPHLLbP9lktzoJ+KBVsUp/f3y/vrdsFuiteUlZf3xzVj68f3y/v75fGOsbt9NC0yI4kL1KJLW5Q9zZYO9zmUmtlcRA8hkB+ptfi9WCyKwpstvm4XdSTwYFgUp3SVcnw6Sjctmp5yaNF0nFuLtk5CtGjrObO5GCKKQGak1eL3YrEovgcsotUIeS1u2N0+XeX7/k6kKkNo0WExMlskLRniOK1xDC3Ofi6GiSOQFSm1WEkx6NyinCOcigU/qZSqkq/ginV9lotatYlQZPYnQju06BaiTYs2kdkak1+n1Yu3rOvovOZimDgCWZH0wWK1C1tecrm5u7upz7UnqXzdLpoItC/ivPsksRZpqVm0qLVxZIuZzcUwcQSyIp0Wm4eK1ZiPoSUTgWY9laxSXbg9rukLoJ216LVeiBZpfznXxaRJA7vNZi6GjSeQBRO+QUcUMkcYtPJULKQbRAbVoteD7/ZE0pYDOjpxa9GWbOY0F5EDCOTIVLW4vxN3rjX3ZySrvLwWYlkXdiXUURw36JhisrWRm4kfHTmgIzE0Kz1jyGsuIgcQyJGpapFfAK1OMzVrqGSV/BY5ju00f38tBq6OtVTObUBNmqT+2mkxr7mIHEAgR/DLf4MX2w06tvSNzPUcRUskzbdI2TEJ89vbjmEuBVoEIUCLKUJx9DGg8AItghCgxRShOPoYUHiBFkEI0GKKUBx9DCi8QIsgBDydG1wXY0ccmAHTejr32HtjEDqEIrP/zWitnnzXrHR3cj1AiyCEaS2iY23VpDBDkVF/rNmhQrf7Wr0IHIk2nmyAFkEI0GJ3vPuENyND0cz1OmvR1m14ykk2mNd09JkLADQSP0FHzkX0O7r1OPxyW7e8/ZK60jNUTv9QNC3mXhrbcDQw3yJrPFq8grkAQDDKg8UsQ5Hj8HuxqAOgeZms0jdUTrdQZEYSF6hF1+5S62X9ncNSQodSM54LAEgSa1HKC8yhSEH7vVhIOUT1y4LJKr1D5XQORc1TDi2ajiN3l1ZpdmL7CPmW1izvuQDAJKUWv9yyblqsfkpW6R0qp38oBmaLpCVDHKc1jqHFbOcCAEFiLS4W9Xki80i3LaL5yaU6nUhS6Rsqh284sz8RmjfzXnIJ1+LZmfo56h1aFG9Z19G5zwUAGgm1qB/0wZdcFre3onWaSt9QOd59wpsl0yItNePrtMaOr2jIei4A0BjtBh3z4WJENFaoq6vUlZbnoMU4t2j+GK5Fs5lW6e3W3dhCbnMBgMkctEjmCMkqB9ai14Nam5Ac0NGJbSSiKzLZbMhuLgAwSfonrppTQ19uPfctfrkVjZuXqSq9Q22F4wadc1i+pslO/OjIAR2JoVnpGUO+cwEASdJsUboxl346N91YajtCZb84PAfct+h+fTZSOe0tW034Itqr5lznAgAS/PLf4NhC0Za+kbmeA6YmkuZbpOyYhPntbccwF6BFEAK0ODgIxemAuQAhQIuDg1CcDpgLEAK0ODgIxemAuQAh4Onc4LoYO+LADJjW07lH/1sfA/39kLYfYfa/Ga3Vk++ale5OrqdAiyCEaS2iRw+bgUJRq2HUH2t2qNDtvlYvAkeijSebAi2CEKDF7sW7T0Qomp81c73OWrR1G55ykg3mNR3hcxErckDGJNYiebtuPRQtDvd3ddZy95i+siqPd2xRnOJr0WYx99LYhqOB+RZZ49FiRnMxTByBrEiqRfI3vpqhyHF4KhZ1DLxuF+ymeE1ZWZfHNWOxtciMJC5Qiy5tUfY0Wzrc51BqZnMxVCSBjBjpwWLkUKSgfd0u2PpRSxOSVYoxLLbFENmi5imHFk3HubVo6yREi7aeM5uL2BEEMiShFm0PPxFDsWrxtbhhd/t0le88c7kpXqexiCYtGeI4rXEMLc5+LiIHEMiRtE/QWRRF/ZhR8unczYEurafeT8WCscX2NV3l5bW44ZX+UGT2J0I7tOgWok2LNpHZGpNfp9WLt6zr6LzmYsBgArmQ+MFitQ0tT+dWjnVx9v3m7u6GR0iiytftonprsGxxCC3SUrNoUWvjyBYzm4vhYglkw2iLaPIxtOQRr6ynUlS+Fje6X+rIjKNFr/VCtEj7y7kuJk0a2G02czFMHIGsSHzJhfh7l81QbNEor61SVw6SLbby4Ls9kbTlgI5O3Fq0JZs5zcVAgQRy4v8BKztPan/K1rgAAAAASUVORK5CYII=" alt="" />

Java调用SqlLoader将大文本导入数据库的更多相关文章

  1. PHP读取CSV大文件导入数据库的示例

    对于数百万条数据量的CSV文件,文件大小可能达到数百M,如果简单读取的话很可能出现超时或者卡死的现象. 为了成功将CSV文件里的数据导入数据库,分批处理是非常必要的. 下面这个函数是读取CSV文件中指 ...

  2. 本地sql大文件导入数据库

    mysql中配置my.ini interactive_timeout = 120 wait_timeout = 120 max_allowed_packet = 32M 导入sql运行命令 sourc ...

  3. java图像开发学习——JTable之导入数据库

    package demo; import java.awt.BorderLayout; import java.awt.Container; import java.awt.event.MouseAd ...

  4. [转] Android自动化测试之使用java调用monkeyrunner(五)

    Android自动化测试之使用java调用monkeyrunner 众所周知,一般情况下我们使用android中的monkeyrunner进行自动化测试时,使用的是python语言来写测试脚本.不过, ...

  5. java调用sqlldr导入csv文件数据到临时表

    package cn.com.file;import java.io.BufferedReader;import java.io.BufferedWriter;import java.io.File; ...

  6. Java查询大文本

    但JAVA本身缺少相应的类库,需要硬编码才能实现结构化文件计算,代码复杂且可读性差,难以实现高效的并行处理. 使用免费的集算器可以弥补这一不足.集算器封装了丰富的结构化文件读写和游标计算函数,书写简单 ...

  7. 【Java】大文本字符串滤重的简单方案~

    本文章也同步至本人的CSDN博客中: http://blog.csdn.net/u012881584/article/details/70477832 今天来说一个Java中处理大文本字符串虑重的两个 ...

  8. Oracle数据库基本操作 (五) —— 使用java调用存储过程

    一.环境准备 登录Oracle数据库scott账号,利用emp进行操作. 1.创建 proc_getyearsal 存储过程 -- 获取指定员工年薪 create or replace procedu ...

  9. java调用kettle_导入jar包(1)

    版权声明:本文为博主原创文章,未经博主允许不得转载. Java调用Kettle执行任务或转换,需要使用Kettle中的jar,可以先导入lib目录中的几个基本的jar,如:kettle-core.ja ...

随机推荐

  1. hadoop错误记录部分总结

    错误记录与分析 错误1:java.net.BindException: Port in use: localhost:0 datanode节点启动时报错 日志信息如下: Exiting with st ...

  2. jquery中$.get()如何让跨域请求携带cookie?

    在这个get请求前面加上这个就好了~~~~

  3. ubuntu之路——day11.1 如何进行误差分析

    举个例子 还是分类猫图片的例子 假设在dev上测试的时候,有100张图片被误分类了.现在要做的就是手动检查所有被误分类的图片,然后看一下这些图片都是因为什么原因被误分类了. 比如有些可能因为被误分类为 ...

  4. 我们一起分析一下这个刚刚修复的RDP漏洞CVE-2019-0708

    写在前面的话 在微软今年五月份的漏洞更新安全公告中,提到了一个跟远程桌面协议(RDP)有关的漏洞.我们之所以要在这里专门针对这个漏洞进行分析,是因为这个漏洞更新涉及到Windows XP以及其他多个W ...

  5. Mini学习之mini.DataGrid使用说明

    参考:http://miniui.com/docs/api/index.html#ui=datagrid mini.DataGrid表格.实现分页加载.自定义列.单元格渲染.行编辑器.锁定列.过滤行. ...

  6. Flutter -------- BottomNavigationBar 界面切换

    Android 中有BottomNavigationBar+Fragment切换 而在Flutter也有的BottomNavigationBar 效果图 底部有两种情况 底部导航栏的类型更改其项目的显 ...

  7. IOS CocoaPods基本使用技巧

    目录: 什么是CocoaPods 如何下载并安装CocoaPods 如何使用CocoaPods 什么是CocoaPods 当开发iOS应用时,或多或少的都会引用第三方类库,例如AFNetworking ...

  8. linux下apache安装ssl步骤

    制作证书: 参考:linux下运用opensll制作ssl证书 生成三个证书 server.crt .server-ca.crt.server.key 安装openssl tar -xzvf open ...

  9. Centos7 卸载 Nginx 并重新安装 Nginx

    1)  卸载nginx [root@locahost /]# yum remove nginx 2) 查看nginx是否还存在 [root@localhost /]# which nginx 3)重新 ...

  10. leetcode 874. Walking Robot Simulation

    874. Walking Robot Simulation https://www.cnblogs.com/grandyang/p/10800993.html 每走一步(不是没走commands里的一 ...