题目描述

现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示。其中第二组中的数字是两两互素的。求最小的非负整数n,满足对于任意的i,n - ai能被bi整除。

输入格式

输入数据的第一行是一个整数k,(1 ≤ k ≤ 10)。接下来有两行,第一行是:a1,a2,...,ak,第二行是b1,b2,...,bk

输出格式

输出所求的整数n。

输入输出样例

输入 #1

3
1 2 3
2 3 5

输出 #1

23

说明/提示

所有数据中,第一组数字的绝对值不超过10^9(可能为负数),第二组数字均为不超过6000的正整数,且第二组里所有数的乘积不超过10^18


这其实只是一道“中国剩余定理”的模板题而已,然鹅出题人真的是丧心病狂 用心良苦,偏要设置几个坑让我们跳,很不幸的,我就中招了。

 #include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=;
int n;
int a[],b[];
int read()
{
int x=,f=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-') f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
void write(int x)
{
if(x<)
{
putchar('-');
x=-x;
}
if(x>) write(x/);
putchar(x%+'');
}
void exgcd(ll a,ll b,ll &d,ll &x,ll &y)
{
if(!b)
{
d=a;
x=;
y=;
}
else
{
exgcd(b,a%b,d,x,y);
ll t=x;x=y;y=t-a/b*y;
}
}
int main()
{
int k;k=read();ll m=,ans=;
for(int i=;i<=k;i++)a[i]=read();
for(int i=;i<=k;i++)
{
b[i]=read();
m*=b[i];
}
for(int i=;i<=k;i++)
{
ll mi=m/b[i],d,x,y;
exgcd(mi,b[i],d,x,y);
ans=(ans+a[i]*mi*x)%m;
}
printf("%lld",(ans+m)%m);
return ;

嗯,

代码敲完后自我感觉良好,

直接Ctrl + c 、 Ctrl + v,

按下提交键。

 #include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=;
int n;
int a[],b[];
int read()
{
int x=,f=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-') f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
void write(int x)
{
if(x<)
{
putchar('-');
x=-x;
}
if(x>) write(x/);
putchar(x%+'');
}
void exgcd(ll a,ll b,ll &d,ll &x,ll &y)
{
if(!b)
{
d=a;
x=;
y=;
}
else
{
exgcd(b,a%b,d,x,y);
ll t=x;x=y;y=t-a/b*y;
}
}
int main()
{
int k;k=read();ll m=,ans=;
for(int i=;i<=k;i++)a[i]=read();
for(int i=;i<=k;i++)
{
b[i]=read();
m*=b[i];
}
for(int i=;i<=k;i++)
{
ll mi=m/b[i],d,x,y;
exgcd(mi,b[i],d,x,y);
ans=(ans+a[i]*mi*x)%m;
}
printf("%lld",(ans+m)%m);
return ;
}
 #include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=;
int n;
int a[],b[];
int read()
{
int x=,f=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-') f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
void write(int x)
{
if(x<)
{
putchar('-');
x=-x;
}
if(x>) write(x/);
putchar(x%+'');
}
void exgcd(ll a,ll b,ll &d,ll &x,ll &y)
{
if(!b)
{
d=a;
x=;
y=;
}
else
{
exgcd(b,a%b,d,x,y);
ll t=x;x=y;y=t-a/b*y;
}
}
int main()
{
int k;k=read();ll m=,ans=;
for(int i=;i<=k;i++)a[i]=read();
for(int i=;i<=k;i++)
{
b[i]=read();
m*=b[i];
}
for(int i=;i<=k;i++)
{
ll mi=m/b[i],d,x,y;
exgcd(mi,b[i],d,x,y);
ans=(ans+a[i]*mi*x)%m;
}
printf("%lld",(ans+m)%m);
return ;

结果居然发现——

然后我赶快回去看了几眼代码,感觉没啥毛病,于是又看了下别人的题解——

喔,我手速加了个快速乘,扫了一遍代码,测了遍样例 样例并没软用,再次Ctrl + c 、 Ctrl + v,按下了提交键,这次肯定没问题的吶~

 #include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=;
int n;
int a[],b[];
int read()
{
int x=,f=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-') f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
void write(int x)
{
if(x<)
{
putchar('-');
x=-x;
}
if(x>) write(x/);
putchar(x%+'');
}
void exgcd(ll a,ll b,ll &d,ll &x,ll &y)
{
if(!b)
{
d=a;
x=;
y=;
}
else
{
exgcd(b,a%b,d,x,y);
ll t=x;x=y;y=t-a/b*y;
}
}
ll ff(ll a,ll b,ll m)
{
ll ans=;
while(b)
{
if(b&)ans=(ans+a)%m;
a=(a+a)%m;
b>>=;
}
return ans;
}
int main()
{
int k;k=read();ll m=,ans=;
for(int i=;i<=k;i++)a[i]=read();
for(int i=;i<=k;i++)
{
b[i]=read();
m*=b[i];
}
for(int i=;i<=k;i++)
{
ll mi=m/b[i],d,x,y;
exgcd(mi,b[i],d,x,y);
x=(x%b[i]+b[i])%b[i];
ans=(ans+ff(ff(mi,x,m),a[i],m))%m;
}
printf("%lld",(ans+m)%m);
return ;
}
 #include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=;
int n;
int a[],b[];
int read()
{
int x=,f=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-') f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
void write(int x)
{
if(x<)
{
putchar('-');
x=-x;
}
if(x>) write(x/);
putchar(x%+'');
}
void exgcd(ll a,ll b,ll &d,ll &x,ll &y)
{
if(!b)
{
d=a;
x=;
y=;
}
else
{
exgcd(b,a%b,d,x,y);
ll t=x;x=y;y=t-a/b*y;
}
}
ll ff(ll a,ll b,ll m)
{
ll ans=;
while(b)
{
if(b&)ans=(ans+a)%m;
a=(a+a)%m;
b>>=;
}
return ans;
}
int main()
{
int k;k=read();ll m=,ans=;
for(int i=;i<=k;i++)a[i]=read();
for(int i=;i<=k;i++)
{
b[i]=read();
m*=b[i];
}
for(int i=;i<=k;i++)
{
ll mi=m/b[i],d,x,y;
exgcd(mi,b[i],d,x,y);
x=(x%b[i]+b[i])%b[i];
ans=(ans+ff(ff(mi,x,m),a[i],m))%m;
}
printf("%lld",(ans+m)%m);
return ;

然鹅打脸就是来的这么突然( ̄ε(# ̄)☆╰╮( ̄▽ ̄///)

我特么第二个点TLE掉是怎么回事?!!

不是,第一遍提交都莫得问题的鸭!我都忍不住要口吐芬芳(`へ´)

火速赶到题解区翻到了之前没看完的题解——

╮(╯▽╰)╭这毒瘤题,真拿它没办法┑( ̄Д  ̄)┍

第三次提交,终于满屏全绿(要想生活过得去,做题就得来点绿~

 #include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=;
int n;
int a[],b[];
int read()
{
int x=,f=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-') f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
void write(int x)
{
if(x<)
{
putchar('-');
x=-x;
}
if(x>) write(x/);
putchar(x%+'');
}
void exgcd(ll a,ll b,ll &d,ll &x,ll &y)
{
if(!b)
{
d=a;
x=;
y=;
}
else
{
exgcd(b,a%b,d,x,y);
ll t=x;x=y;y=t-a/b*y;
}
}
ll ff(ll a,ll b,ll m)
{
ll ans=;
while(b)
{
if(b&)ans=(ans+a)%m;
a=(a+a)%m;
b>>=;
}
return ans;
}
int main()
{
int k;k=read();ll m=,ans=;
for(int i=;i<=k;i++)a[i]=read();
for(int i=;i<=k;i++)
{
b[i]=read();
m*=b[i];
}
for(int i=;i<=k;i++)
{
ll mi=m/b[i],d,x,y;
exgcd(mi,b[i],d,x,y);
x=(x%b[i]+b[i])%b[i];
ans=(ans+ff(ff(mi,x,m),(a[i]+m)%m,m))%m;
}
printf("%lld",(ans+m)%m);
return ;
}

//参考:lahlah 的博客

[TJOI2009]猜数字(洛谷 3868)的更多相关文章

  1. P3868 [TJOI2009]猜数字

    [TJOI2009]猜数字 中国剩余定理 求解i=1 to n : x≡a[i] (mod b[i])的同余方程组 设 t= ∏i=1 to n b[i] 我们先求出 i=1 to n : x≡1 ( ...

  2. 洛谷P3868 [TJOI2009]猜数字(中国剩余定理,扩展欧几里德)

    洛谷题目传送门 90分WA第二个点的看过来! 简要介绍一下中国剩余定理 中国剩余定理,就是用来求解这样的问题: 假定以下出现数都是自然数,对于一个线性同余方程组(其中\(\forall i,j\in[ ...

  3. 洛谷 P3868 [TJOI2009]猜数字

    题意简述 给定\(a[1],a[2],\cdots,a[n]\) 和 \(b[1],b[2],\cdots,b[n]\),其中\(b\)中元素两两互素. 求最小的非负整数\(n\),满足对于任意的\( ...

  4. USACO1.4 1.5 搜索剪枝与数字 洛谷OJ P1214 P1215 P1217 P1218

    USACO1.4 题解 Arithmetic Progressions 题意 让你求长为n的由小于2*m*m的双平方数组成的等差数列有几个 双平方数:形如 B=P*P+Q*Q,p,q>0的数 题 ...

  5. [TJOI2009]猜数字

    题目描述 现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n,满足对于任意 ...

  6. CRT【p3868】[TJOI2009]猜数字

    Description 现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n ...

  7. [Luogu3868] [TJOI2009]猜数字

    题目描述 现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n,满足对于任意 ...

  8. [TJOI2009] 猜数字 - 中国剩余定理

    现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n,满足对于任意的i,n ...

  9. Luogu P3868 [TJOI2009]猜数字

    题目链接 \(Click\) \(Here\) 中国剩余定理的板子.小心取模. #include <bits/stdc++.h> using namespace std; const in ...

随机推荐

  1. D-Bus

    D-Bus三层架构 D-Bus是一个为应用程序间通信的消息总线系统, 用于进程之间的通信.它是个3层架构的IPC 系统,包括: 1.函数库libdbus ,用于两个应用程序互相联系和交互消息. 2.一 ...

  2. css设置手型光标

    因为现在主流浏览器是chrome,所以要尽量使用 cursor:pointer,不要使用 cursor:hand chrome下支持的鼠标样式 default 默认光标(通常是一个箭头) auto 默 ...

  3. 【FPGA】Verilog实现交通信号灯

    大二数字电路的课程设计中,有一份日常作业使用Xilinx FPGA实现简易交通信号灯,但很可惜当时时间有限,没能最终完成.正好在这一学期选修SOPC设计课程,同样采用了Xilinx FPGA,故打算重 ...

  4. Web应急:网站首页被篡改

    网站首页被非法篡改,是的,就是你一打开网站就知道自己的网站出现了安全问题,网站程序存在严重的安全漏洞,攻击者通过上传脚本木马,从而对网站内容进行篡改.而这种篡改事件在某些场景下,会被无限放大. 现象描 ...

  5. IEEE Fellow 何海波

    IEEE Fellow 何海波 11月21日,全球最大的非营利专业技术学会IEEE(电气与电子工程师协会)公布了2018年度新当选Fellow(会士)名单,我校校友何海波教授入选. 何海波,美国罗德岛 ...

  6. Dos.ORM修改数据遇到的问题

    2019年11月6日,今天使用Dos.ORM进行数据的批量修改,出现修改一条数据造成所有数据相应状态改变的情况,代码如下: 按照一步步调试的方式,排查出原因:生成的orm实体类缺少 主键 的标识,该原 ...

  7. c# 项目nuget不自动安装dll

    问题 创建的项目提交到服务器上,其他人下载项目后无法生成解决方案成功,无法自动生成dll,无法自动下载安装相应的插件 解决方案 删除packages文件夹即可,nuget就可以自动安装相关的dll了

  8. Logstash——multiline 插件,匹配多行日志

    本文内容 测试数据 字段属性 按多行解析运行时日志 把多行日志解析到字段 参考资料 在处理日志时,除了访问日志外,还要处理运行时日志,该日志大都用程序写的,比如 log4j.运行时日志跟访问日志最大的 ...

  9. Android中实现Activity的透明背景效果

    实现方式一(使用系统透明样式) 通过配置 Activity 的样式来实现,在 AndroidManifest.xml 找到要实现透明效果的 Activity,在 Activity 的配置中添加如下的代 ...

  10. vue开发环境配置

    一.开发工具 Visual Studio Code 二.环境搭建 vue推荐开发环境: Node.js: javascript运行环境(runtime),不同系统直接运行各种编程语言 npm: Nod ...