小书匠深度学习

分类方法常用的评估模型好坏的方法.

0.预设问题

假设我现在有一个二分类任务,是分析100封邮件是否是垃圾邮件,其中不是垃圾邮件有65封,是垃圾邮件有35封.模型最终给邮件的结论只有两个:是垃圾邮件与 不是垃圾邮件.

经过自己的努力,自己设计了模型,得到了结果,分类结果如下:

  • 不是垃圾邮件70封(其中真实不是垃圾邮件60封,是垃圾邮件有10封)
  • 是垃圾邮件30封(其中真实是垃圾邮件25封,不是垃圾邮件5封)

现在我们设置,不是垃圾邮件.为正样本,是垃圾邮件为负样本

我们一般使用四个符号表示预测的所有情况:

  • TP(真阳性):正样本被正确预测为正样本,例子中的60
  • FP(假阳性):负样本被错误预测为正样本,例子中的10
  • TN(真阴性):负样本被正确预测为负样本,例子中的25
  • FN(假阴性):正样本被错误预测为负样本,例子中的5

1.评价方法介绍

先看最终的计算公式:

1.Precision(精确率)

关注预测为正样本的数据(可能包含负样本)中,真实正样本的比例

计算公式

例子解释:对上前面例子,关注的部分就是预测结果的70封不是垃圾邮件中真实不是垃圾邮件占该预测结果的比率,现在Precision=60/(600+10)=85.71%

2.Recall(召回率)

关注真实正样本的数据(不包含任何负样本)中,正确预测的比例

计算公式

例子解释:对上前面例子,关注的部分就是真实有65封不是垃圾邮件,这其中你的预测结果中有多少预测正确了,Recall=60/(60+5)=92.31%

3.F-score中β值的介绍

β是用来平衡Precision,Recall在F-score计算中的权重,取值情况有以下三种:

  • 如果取1,表示Precision与Recall一样重要
  • 如果取小于1,表示Precision比Recall重要
  • 如果取大于1,表示Recall比Precision重要

一般情况下,β取1,认为两个指标一样重要.此时F-score的计算公式为:

前面计算的结果,得到Fscore=(2*0.8571*0.9231)/(0.8571+0.9231)=88.89%

3.其他考虑

预测模型无非就是两个结果

  • 准确预测(不管是正样子预测为正样本,还是负样本预测为负样本)
  • 错误预测

那我就可以直接按照下面的公式求预测准确率,用这个值来评估模型准确率不就行了

那为什么还要那么复杂算各种值.理由是一般而言:负样本远大于正样本。

可以想象,两个模型的TN变化不大的情况下,但是TP在两个模型上有不同的值,TN>>TP是不是可以推断出:两个模型的(TN+TP)近似相等.这不就意味着两个模型按照以上公式计算的Accuracy近似相等了.那用这个指标有什么用!!!

所以说,对于这种情况的二分类问题,一般使用Fscore去评估模型.

需要注意的是:Fscore只用来评估二分类的模型,Accuracy没有这限制

参考

1.机器学习中的 precision、recall、accuracy、F1 Score

2.分类模型的评估方法-F分数(F-Score)

分类模型的评价指标Fscore的更多相关文章

  1. 【AUC】二分类模型的评价指标ROC Curve

    AUC是指:从一堆样本中随机抽一个,抽到正样本的概率比抽到负样本的概率大的可能性! AUC是一个模型评价指标,只能用于二分类模型的评价,对于二分类模型,还有很多其他评价指标,比如logloss,acc ...

  2. 分类模型的性能评价指标(Classification Model Performance Evaluation Metric)

    二分类模型的预测结果分为四种情况(正类为1,反类为0): TP(True Positive):预测为正类,且预测正确(真实为1,预测也为1) FP(False Positive):预测为正类,但预测错 ...

  3. NLP学习(2)----文本分类模型

    实战:https://github.com/jiangxinyang227/NLP-Project 一.简介: 1.传统的文本分类方法:[人工特征工程+浅层分类模型] (1)文本预处理: ①(中文) ...

  4. 笔记︱风控分类模型种类(决策、排序)比较与模型评估体系(ROC/gini/KS/lift)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 本笔记源于CDA-DSC课程,由常国珍老师主讲 ...

  5. MXNET:分类模型

    线性回归模型适用于输出为连续值的情景,例如输出为房价.在其他情景中,模型输出还可以是一个离散值,例如图片类别.对于这样的分类问题,我们可以使用分类模型,例如softmax回归. 为了便于讨论,让我们假 ...

  6. Spark学习笔记——构建分类模型

    Spark中常见的三种分类模型:线性模型.决策树和朴素贝叶斯模型. 线性模型,简单而且相对容易扩展到非常大的数据集:线性模型又可以分成:1.逻辑回归:2.线性支持向量机 决策树是一个强大的非线性技术, ...

  7. 利用libsvm-mat建立分类模型model参数解密[zz from faruto]

    本帖子主要就是讲解利用libsvm-mat工具箱建立分类(回归模型)后,得到的模型model里面参数的意义都是神马?以及如果通过model得到相应模型的表达式,这里主要以分类问题为例子. 测试数据使用 ...

  8. Spark机器学习4·分类模型(spark-shell)

    线性模型 逻辑回归--逻辑损失(logistic loss) 线性支持向量机(Support Vector Machine, SVM)--合页损失(hinge loss) 朴素贝叶斯(Naive Ba ...

  9. sklearn特征选择和分类模型

    sklearn特征选择和分类模型 数据格式: 这里.原始特征的输入文件的格式使用libsvm的格式,即每行是label index1:value1 index2:value2这样的稀疏矩阵的格式. s ...

随机推荐

  1. 【已解決】谷歌浏览器如何清理缓存(cookie)

    清除缓存快捷键 Ctrl+Shift+Delete

  2. css元素水平垂直居中

    温习一下元素水平垂直居中的几种方法 元素有具体宽度 1.absolute+负边距 .LV_center{ border: 1px solid red; position: absolute; widt ...

  3. Winows上简单配置使用kafka(.net使用)

    一.kafka环境配置 1.jdk安装 安装文件:http://www.oracle.com/technetwork/java/javase/downloads/index.html 下载JDK安装完 ...

  4. Kubemetes

    将应用docker化,配合ETCD.kubernetes等工具在容器的层面上实现高可用和负载均衡 容器化部署 容器化部署应用具有灵活.高效的使用资源,容器可以包含其所需的全部文件,如同在虚拟机上部署应 ...

  5. 【转】Vue项目报错:Uncaught SyntaxError: Unexpected token <

    这篇文章主要介绍了Vue项目报错:Uncaught SyntaxError: Unexpected token <,在引入第三方依赖的 JS 文件时,遇到的一个问题,小编觉得挺不错的,现在分享给 ...

  6. Python3 解决windows里PIP下载安装速度慢

    直接保存为xxx.py运行即可 自动在用户文件夹创建pip文件夹,并创建配置文件:pip.ini 从此告别pip install XXXX 下载模块速度超级慢的问题! # -*- coding: ut ...

  7. dm9000网卡 S3C2440

    配置U-Boot支持dm9000网卡 原理图 # vi drivers/net/Makefile obj-$(CONFIG_DRIVER_NET_CS8900) += cs8900.o obj-$(C ...

  8. Flink Time深度解析(转)

    Flink 的 API 大体上可以划分为三个层次:处于最底层的 ProcessFunction.中间一层的 DataStream API 和最上层的 SQL/Table API,这三层中的每一层都非常 ...

  9. Mysql 存储过程初识

    存储过程 认识 在一些编程语言中, 如pascal, 有一个概念叫"过程" procedure, 和"函数" function, 如VB中的sub. Java, ...

  10. Odoo中的模型继承、视图继承、Qweb模板继承详解

    转载请注明原文地址:https://www.cnblogs.com/ygj0930/p/10826114.html 在实际开发过程中,经常会遇到需要修改Odoo原生逻辑的情况.然而,直接修改Odoo底 ...