深度学习中loss总结
一、分类损失
1、交叉熵损失函数
公式:
交叉熵的原理
交叉熵刻画的是实际输出(概率)与期望输出(概率)的距离,也就是交叉熵的值越小,两个概率分布就越接近。假设概率分布p为期望输出,概率分布q为实际输出,H(p,q)为交叉熵,则:
有这样一个定理:当p=q时,交叉熵去的最小值.因此可以利用交叉熵比较一个分布与另一个分布的吻合情况.交叉熵越接近与熵,q便是针对p更好的逼近,实际上,模型的输出与期望输出越接近,交叉熵也会越小,这正是损失函数所需要的.
在对熵进行最小化时,将log2替换为log完全没有任何问题,因为两者只相差一个常系数.
在TensorFlow中实现交叉熵
cross_entropy = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0)))
其中y_表示期望的输出,y表示实际的输出(概率值),*为矩阵元素间相乘,而不是矩阵乘。
上述代码实现了第一种形式的交叉熵计算,需要说明的是,计算的过程其实和上面提到的公式有些区别,按照上面的步骤,平均交叉熵应该是先计算batch中每一个样本的交叉熵后取平均计算得到的,而利用tf.reduce_mean函数其实计算的是整个矩阵的平均值,这样做的结果会有差异,但是并不改变实际意义。
除了tf.reduce_mean函数,tf.clip_by_value函数是为了限制输出的大小,为了避免log0为负无穷的情况,将输出的值限定在(1e-10, 1.0)之间,其实1.0的限制是没有意义的,因为概率怎么会超过1呢。
由于在神经网络中,交叉熵常常与Sorfmax函数组合使用,所以TensorFlow对其进行了封装,即:
cross_entropy = tf.nn.sorfmax_cross_entropy_with_logits(y_ ,y)
2、sigmoid_cross_entropy_with_logits
函数定义
def sigmoid_cross_entropy_with_logits(_sentinel=None, labels=None, logits=None, name=None):
函数意义
这个函数的作用是计算经sigmoid 函数激活之后的交叉熵。
为了描述简洁,我们规定 x = logits,z = targets,那么 Logistic 损失值为:
x−x∗z+log(1+exp(−x))
对于x<0的情况,为了执行的稳定,使用计算式:
−x∗z+log(1+exp(x))−x∗z+log(1+exp(x))
为了确保计算稳定,避免溢出,真实的计算实现如下:
max(x,0)−x∗z+log(1+exp(−abs(x)))max(x,0)−x∗z+log(1+exp(−abs(x)))
logits 和 targets 必须有相同的数据类型和数据维度。
它适用于每个类别相互独立但互不排斥的情况,在一张图片中,同时包含多个分类目标(大象和狗),那么就可以使用这个函数。
输入
_sentinel: 一般情况下不怎么使用的参数,可以直接保持默认使其为None
logits: 一个Tensor。数据类型是以下之一:float32或者float64。
targets: 一个Tensor。数据类型和数据维度都和 logits 相同。
name: 为这个操作取个名字。
输出
一个 Tensor ,数据维度和 logits 相同。
3、weighted_cross_entropy_with_logits
weighted_cross_entropy_with_logits(targets, logits, pos_weight, name=None):
此函数功能以及计算方式基本与tf_nn_sigmoid_cross_entropy_with_logits差不多,但是加上了权重的功能,是计算具有权重的sigmoid交叉熵函数
计算方法:
pos_weight∗targets∗−log(sigmoid(logits))+(1−targets)∗−log(1−sigmoid(logits))
参数:
_sentinel:本质上是不用的参数,不用填
targets:一个和logits具有相同的数据类型(type)和尺寸形状(shape)的张量(tensor)
shape:[batch_size,num_classes],单样本是[num_classes]
logits:一个数据类型(type)是float32或float64的张量
pos_weight:正样本的一个系数
name:操作的名字,可填可不填
4、softmax_cross_entropy_with_logits
def softmax_cross_entropy_with_logits(_sentinel=None, labels=None, logits=None, dim=-1, name=None)
解释
这个函数的作用是计算 logits 经 softmax 函数激活之后的交叉熵。
对于每个独立的分类任务,这个函数是去度量概率误差。比如,在 CIFAR-10 数据集上面,每张图片只有唯一一个分类标签:一张图可能是一只狗或者一辆卡车,
但绝对不可能两者都在一张图中。(这也是和 tf.nn.sigmoid_cross_entropy_with_logits(logits, targets, name=None)这个API的区别)
说明
- 输入API的数据 logits 不能进行缩放,因为在这个API的执行中会进行 softmax 计算,如果 logits 进行了缩放,那么会影响计算正确率。
- 不要调用这个API去计算 softmax 的值,因为这个API最终输出的结果并不是经过 softmax 函数的值。
- logits 和 labels 必须有相同的数据维度 [batch_size, num_classes],和相同的数据类型 float32 或者 float64 。
- 它适用于每个类别相互独立且排斥的情况,一幅图只能属于一类,而不能同时包含一条狗和一只大象.
参数
输入参数
_sentinel: 这个参数一般情况不使用,直接设置为None就好 logits: 一个没有缩放的对数张量。labels和logits具有相同的数据类型(type)和尺寸(shape) labels: 每一行 labels[i] 必须是一个有效的概率分布值。 name: 为这个操作取个名字。
输出参数
一个 Tensor ,数据维度是一维的,长度是 batch_size,数据类型都和 logits 相同。
5、sparse_softmax_cross_entropy_with_logits
定义
sparse_softmax_cross_entropy_with_logits(_sentinel=None, labels=None, logits=None, name=None):
说明
此函数大致与tf_nn_softmax_cross_entropy_with_logits的计算方式相同,
适用于每个类别相互独立且排斥的情况,一幅图只能属于一类,而不能同时包含一条狗和一只大象
但是在对于labels的处理上有不同之处,labels从shape来说此函数要求shape为[batch_size],
labels[i]是[0,num_classes)的一个索引, type为int32或int64,即labels限定了是一个一阶tensor,
并且取值范围只能在分类数之内,表示一个对象只能属于一个类别
参数
_sentinel:本质上是不用的参数,不用填
logits:shape为[batch_size,num_classes],type为float32或float64
name:操作的名字,可填可不填
深度学习中loss总结的更多相关文章
- 从极大似然估计的角度理解深度学习中loss函数
从极大似然估计的角度理解深度学习中loss函数 为了理解这一概念,首先回顾下最大似然估计的概念: 最大似然估计常用于利用已知的样本结果,反推最有可能导致这一结果产生的参数值,往往模型结果已经确定,用于 ...
- 深度学习中的Data Augmentation方法(转)基于keras
在深度学习中,当数据量不够大时候,常常采用下面4中方法: 1. 人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data Augm ...
- 深度学习中的Normalization模型
Batch Normalization(简称 BN)自从提出之后,因为效果特别好,很快被作为深度学习的标准工具应用在了各种场合.BN 大法虽然好,但是也存在一些局限和问题,诸如当 BatchSize ...
- [优化]深度学习中的 Normalization 模型
来源:https://www.chainnews.com/articles/504060702149.htm 机器之心专栏 作者:张俊林 Batch Normalization (简称 BN)自从提出 ...
- 【转载】深度学习中softmax交叉熵损失函数的理解
深度学习中softmax交叉熵损失函数的理解 2018-08-11 23:49:43 lilong117194 阅读数 5198更多 分类专栏: Deep learning 版权声明:本文为博主原 ...
- 深度学习中正则化技术概述(附Python代码)
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 磐石 介绍 数据科学研究者们最常遇见的问题之一就是怎样避免过拟合. ...
- 深度学习中常见的 Normlization 及权重初始化相关知识(原理及公式推导)
Batch Normlization(BN) 为什么要进行 BN 防止深度神经网络,每一层得参数更新会导致上层的输入数据发生变化,通过层层叠加,高层的输入分布变化会十分剧烈,这就使得高层需要不断去重新 ...
- 深度学习中优化【Normalization】
深度学习中优化操作: dropout l1, l2正则化 momentum normalization 1.为什么Normalization? 深度神经网络模型的训练为什么会很困难?其中一个重 ...
- 深度学习中dropout策略的理解
现在有空整理一下关于深度学习中怎么加入dropout方法来防止测试过程的过拟合现象. 首先了解一下dropout的实现原理: 这些理论的解释在百度上有很多.... 这里重点记录一下怎么实现这一技术 参 ...
随机推荐
- OpenGL 中的三维纹理操作
#define _CRT_SECURE_NO_WARNINGS #include <gl/glut.h> #include <stdio.h> #include <std ...
- 8 Traits of an Experienced Programmer that every beginner programmer should know
Referrence: http://whats-online.info/guides-and-info/36/Traits-of-Experienced-Programmer-that-every- ...
- springboot使用Fiber纤程踩过的坑
@RequestAttribute为null 在springboot中使用@FiberSpringBootApplication注解标注在SpringBootApplication上时,发现在拦截器( ...
- HBase的部署与其它相关组件(Hive和Phoenix)的集成
HBase的部署与其它相关组件(Hive和Phoenix)的集成 一.HBase部署 1.1.Zookeeper正常部署 首先保证Zookeeper集群的正常部署,并启动之: /opt/module/ ...
- 【异常】Zipkin server java.lang.IllegalArgumentException: Prometheus requires that all meters with the same name have the same set of tag keys. There is already an existing meter containing tag keys [meth
解决办法: 添加下面配置就OK #zipkin启动报错无法访问的解决方法 management.metrics.web.server.auto-time-requests: false
- Windows系统下安装VirtualBox及安装Ubuntu16.04
1.软件介绍 VirtualBox VirtualBox 是一款免费的开源虚拟机软件,所谓虚拟机软件,就是能够提供各种模拟的硬件环境,并且在其上安装各种操作系统,目前支持Window,Linux,Ma ...
- spring cloud微服务实战教程/pdf/视频/百度云资源
资源站:http://www.supan.vip 点击进入直接查找资源: http://www.supan.vip/spring%20cloud微服务实战 <Spring Cloud微服务实战& ...
- C#实体类与XML相互转换
1.实体类与XML相互转换 将实体类转换成XML需要使用XmlSerializer类的Serialize方法,将实体类序列化. 把XML转换成相应的实体类,需要使用到XmlSerializer类的De ...
- PAT 乙级 1002.写出这个数 C++/Java
1002 写出这个数 (20 分) 题目来源 读入一个正整数 n,计算其各位数字之和,用汉语拼音写出和的每一位数字. 输入格式: 每个测试输入包含 1 个测试用例,即给出自然数 n 的值.这里保证 n ...
- scala简单的功能实现~weekone
以下是scala简单的入门题~ 1.⼀个数字如果为正数,则它的signum为1:如果是负数,怎么signum为-1:如果是0,则signum 为0.编写⼀个函数来计算这个值. object Test ...